Loading…
Analytical expressions for topological properties of polycyclic benzenoid networks
Quantitative structure‐activity and structure‐property relationships of complex polycyclic benzenoid networks require expressions for the topological properties of these networks. Structure‐based topological indices of these networks enable prediction of chemical properties and the bioactivities of...
Saved in:
Published in: | Journal of chemometrics 2016-11, Vol.30 (11), p.682-697 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantitative structure‐activity and structure‐property relationships of complex polycyclic benzenoid networks require expressions for the topological properties of these networks. Structure‐based topological indices of these networks enable prediction of chemical properties and the bioactivities of these compounds through quantitative structure‐activity and structure‐property relationships methods. We consider a number of infinite convex benzenoid networks that include polyacene, parallelogram, trapezium, triangular, bitrapezium, and circumcorone series benzenoid networks. For all such networks, we compute analytical expressions for both vertex‐degree and edge‐based topological indices such as edge‐Wiener, vertex‐edge Wiener, vertex‐Szeged, edge‐Szeged, edge‐vertex Szeged, total‐Szeged, Padmakar‐Ivan, Schultz, Gutman, Randić, generalized Randić, reciprocal Randić, reduced reciprocal Randić, first Zagreb, second Zagreb, reduced second Zagreb, hyper Zagreb, augmented Zagreb, atom‐bond connectivity, harmonic, sum‐connectivity, and geometric‐arithmetic indices. In addition we have obtained expressions for these topological indices for 3 types of parallelogram‐like polycyclic benzenoid networks.
Topological indices are designed as basically transforming a molecular graph into a numeric number. In this paper, we have derived the analytical expressions of distance and/or degree‐based topological indices for infinite convex benzenoid networks and three types of parallelogram‐like polycyclic benzenoid networks. |
---|---|
ISSN: | 0886-9383 1099-128X |
DOI: | 10.1002/cem.2851 |