Loading…

L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity

Dopamine (DA) is one of the most important catecholamine neurotransmitters of the human central nervous system, and is involved in many behavioral responses and brain functions. Below normal DA levels in biological fluids can lead to different neurodegenerative conditions. For excess DA levels, a fa...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2017-01, Vol.87, p.693-700
Main Authors: Diaz-Diestra, Daysi, Thapa, Bibek, Beltran-Huarac, Juan, Weiner, Brad R., Morell, Gerardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c515t-aee5797e442195955a9c5428b0da3b82d042ee06a4ca78b9eb087ad3c5231c9d3
cites cdi_FETCH-LOGICAL-c515t-aee5797e442195955a9c5428b0da3b82d042ee06a4ca78b9eb087ad3c5231c9d3
container_end_page 700
container_issue
container_start_page 693
container_title Biosensors & bioelectronics
container_volume 87
creator Diaz-Diestra, Daysi
Thapa, Bibek
Beltran-Huarac, Juan
Weiner, Brad R.
Morell, Gerardo
description Dopamine (DA) is one of the most important catecholamine neurotransmitters of the human central nervous system, and is involved in many behavioral responses and brain functions. Below normal DA levels in biological fluids can lead to different neurodegenerative conditions. For excess DA levels, a failure in energy metabolism is indicated. In this study, a facile room-temperature phosphorescence sensor is developed to detect DA based on l-cysteine capped Mn doped ZnS quantum dots (l-cys ZnS:Mn QDs). The QDs display a prominent orange emission band peaking at ~598nm, which is strongly quenched upon addition of DA in alkaline medium. The sensor exhibits a linear working range of ~0.15–3.00μM, and a limit of detection of ~7.80nM. These results are explained in terms of a pH-dependent electron transfer process, in which the oxidized dopamine quinone functions as an efficient electron acceptor. The QDs-based sensor shows a high selectivity to DA over common interfering biomolecules (including some amino acids, ascorbic acid, chloride and glucose). The sensor has been successfully applied for the detection of DA in urine samples, yielding recoveries as high as 93%. Our findings indicate that our developed sensor exhibits high sensitivity and reproducibility to determine DA even in biological fluids where DA is at low levels, e.g., in the central nervous system, which is the usual clinical profile of a neurodegenerative disorder associated to the Parkinson's disease. [Display omitted] •Dopamine phosphorescence sensor based on L-cys capped ZnS:Mn QDs.•Sensor is highly sensitive at the nanomolar range (limit of detection ~8nM).•QDs phosphorescence is slightly quenched by main interfering analytes.•Method can be applied to determine dopamine in urine or other body fluids.•Sensor can be used for imaging neurodegenerative disorders in the nervous system.
doi_str_mv 10.1016/j.bios.2016.09.022
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864574172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566316308946</els_id><sourcerecordid>1844351785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-aee5797e442195955a9c5428b0da3b82d042ee06a4ca78b9eb087ad3c5231c9d3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhD3BAPnJJ8GccIy6oAlqpiANw4WI59izr1SZObWer_fc42sIR9TQz0jOvRvMg9JqSlhLavdu3Q4i5ZbVviW4JY0_QhvaKN4Jx-RRtiJZdI7uOX6AXOe8JIYpq8hxdMNVx2vVig463jTvlAmEC7Ow8g8e_pu_vv074brFTWUbsY8l4GxNOMY5NgXGGZMuSAHso4EqIE47bis12XFPuQ9nhXfi9wxmmHEo4hnLCdvJ1Pqz8Or9Ez7b2kOHVQ71EPz9_-nF13dx--3Jz9bEeJaksjQWQSisQglEttZRWOylYPxBv-dAzTwQDIJ0Vzqp-0DCQXlnPnWScOu35JXp7zp1TvFsgFzOG7OBwsBPEJRvad0IqQRV7BCqJUpJ04hGoEFxS1cuKsjPqUsw5wdbMKYw2nQwlZrVo9ma1aFaLhmhTLdalNw_5yzCC_7fyV1sFPpwBqL87BkgmuwCTAx9SfbHxMfwv_w8sZq8n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844351785</pqid></control><display><type>article</type><title>L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity</title><source>ScienceDirect Freedom Collection</source><creator>Diaz-Diestra, Daysi ; Thapa, Bibek ; Beltran-Huarac, Juan ; Weiner, Brad R. ; Morell, Gerardo</creator><creatorcontrib>Diaz-Diestra, Daysi ; Thapa, Bibek ; Beltran-Huarac, Juan ; Weiner, Brad R. ; Morell, Gerardo</creatorcontrib><description>Dopamine (DA) is one of the most important catecholamine neurotransmitters of the human central nervous system, and is involved in many behavioral responses and brain functions. Below normal DA levels in biological fluids can lead to different neurodegenerative conditions. For excess DA levels, a failure in energy metabolism is indicated. In this study, a facile room-temperature phosphorescence sensor is developed to detect DA based on l-cysteine capped Mn doped ZnS quantum dots (l-cys ZnS:Mn QDs). The QDs display a prominent orange emission band peaking at ~598nm, which is strongly quenched upon addition of DA in alkaline medium. The sensor exhibits a linear working range of ~0.15–3.00μM, and a limit of detection of ~7.80nM. These results are explained in terms of a pH-dependent electron transfer process, in which the oxidized dopamine quinone functions as an efficient electron acceptor. The QDs-based sensor shows a high selectivity to DA over common interfering biomolecules (including some amino acids, ascorbic acid, chloride and glucose). The sensor has been successfully applied for the detection of DA in urine samples, yielding recoveries as high as 93%. Our findings indicate that our developed sensor exhibits high sensitivity and reproducibility to determine DA even in biological fluids where DA is at low levels, e.g., in the central nervous system, which is the usual clinical profile of a neurodegenerative disorder associated to the Parkinson's disease. [Display omitted] •Dopamine phosphorescence sensor based on L-cys capped ZnS:Mn QDs.•Sensor is highly sensitive at the nanomolar range (limit of detection ~8nM).•QDs phosphorescence is slightly quenched by main interfering analytes.•Method can be applied to determine dopamine in urine or other body fluids.•Sensor can be used for imaging neurodegenerative disorders in the nervous system.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2016.09.022</identifier><identifier>PMID: 27631684</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Biosensing Techniques - methods ; Capping ; Central nervous system ; Cysteine - chemistry ; Dopamine ; Dopamine - analysis ; Dopamine - urine ; Human behavior ; Humans ; Limit of Detection ; Luminescent Measurements - methods ; Manganese - chemistry ; Mn-doped ZnS ; Quantum dots ; Quantum Dots - chemistry ; Quantum Dots - ultrastructure ; Reproducibility of Results ; Selectivity ; Sensitivity ; Sensors ; Sulfides - chemistry ; Temperature ; Zinc Compounds - chemistry</subject><ispartof>Biosensors &amp; bioelectronics, 2017-01, Vol.87, p.693-700</ispartof><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-aee5797e442195955a9c5428b0da3b82d042ee06a4ca78b9eb087ad3c5231c9d3</citedby><cites>FETCH-LOGICAL-c515t-aee5797e442195955a9c5428b0da3b82d042ee06a4ca78b9eb087ad3c5231c9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27631684$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diaz-Diestra, Daysi</creatorcontrib><creatorcontrib>Thapa, Bibek</creatorcontrib><creatorcontrib>Beltran-Huarac, Juan</creatorcontrib><creatorcontrib>Weiner, Brad R.</creatorcontrib><creatorcontrib>Morell, Gerardo</creatorcontrib><title>L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Dopamine (DA) is one of the most important catecholamine neurotransmitters of the human central nervous system, and is involved in many behavioral responses and brain functions. Below normal DA levels in biological fluids can lead to different neurodegenerative conditions. For excess DA levels, a failure in energy metabolism is indicated. In this study, a facile room-temperature phosphorescence sensor is developed to detect DA based on l-cysteine capped Mn doped ZnS quantum dots (l-cys ZnS:Mn QDs). The QDs display a prominent orange emission band peaking at ~598nm, which is strongly quenched upon addition of DA in alkaline medium. The sensor exhibits a linear working range of ~0.15–3.00μM, and a limit of detection of ~7.80nM. These results are explained in terms of a pH-dependent electron transfer process, in which the oxidized dopamine quinone functions as an efficient electron acceptor. The QDs-based sensor shows a high selectivity to DA over common interfering biomolecules (including some amino acids, ascorbic acid, chloride and glucose). The sensor has been successfully applied for the detection of DA in urine samples, yielding recoveries as high as 93%. Our findings indicate that our developed sensor exhibits high sensitivity and reproducibility to determine DA even in biological fluids where DA is at low levels, e.g., in the central nervous system, which is the usual clinical profile of a neurodegenerative disorder associated to the Parkinson's disease. [Display omitted] •Dopamine phosphorescence sensor based on L-cys capped ZnS:Mn QDs.•Sensor is highly sensitive at the nanomolar range (limit of detection ~8nM).•QDs phosphorescence is slightly quenched by main interfering analytes.•Method can be applied to determine dopamine in urine or other body fluids.•Sensor can be used for imaging neurodegenerative disorders in the nervous system.</description><subject>Biosensing Techniques - methods</subject><subject>Capping</subject><subject>Central nervous system</subject><subject>Cysteine - chemistry</subject><subject>Dopamine</subject><subject>Dopamine - analysis</subject><subject>Dopamine - urine</subject><subject>Human behavior</subject><subject>Humans</subject><subject>Limit of Detection</subject><subject>Luminescent Measurements - methods</subject><subject>Manganese - chemistry</subject><subject>Mn-doped ZnS</subject><subject>Quantum dots</subject><subject>Quantum Dots - chemistry</subject><subject>Quantum Dots - ultrastructure</subject><subject>Reproducibility of Results</subject><subject>Selectivity</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Sulfides - chemistry</subject><subject>Temperature</subject><subject>Zinc Compounds - chemistry</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0EokvhD3BAPnJJ8GccIy6oAlqpiANw4WI59izr1SZObWer_fc42sIR9TQz0jOvRvMg9JqSlhLavdu3Q4i5ZbVviW4JY0_QhvaKN4Jx-RRtiJZdI7uOX6AXOe8JIYpq8hxdMNVx2vVig463jTvlAmEC7Ow8g8e_pu_vv074brFTWUbsY8l4GxNOMY5NgXGGZMuSAHso4EqIE47bis12XFPuQ9nhXfi9wxmmHEo4hnLCdvJ1Pqz8Or9Ez7b2kOHVQ71EPz9_-nF13dx--3Jz9bEeJaksjQWQSisQglEttZRWOylYPxBv-dAzTwQDIJ0Vzqp-0DCQXlnPnWScOu35JXp7zp1TvFsgFzOG7OBwsBPEJRvad0IqQRV7BCqJUpJ04hGoEFxS1cuKsjPqUsw5wdbMKYw2nQwlZrVo9ma1aFaLhmhTLdalNw_5yzCC_7fyV1sFPpwBqL87BkgmuwCTAx9SfbHxMfwv_w8sZq8n</recordid><startdate>20170115</startdate><enddate>20170115</enddate><creator>Diaz-Diestra, Daysi</creator><creator>Thapa, Bibek</creator><creator>Beltran-Huarac, Juan</creator><creator>Weiner, Brad R.</creator><creator>Morell, Gerardo</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20170115</creationdate><title>L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity</title><author>Diaz-Diestra, Daysi ; Thapa, Bibek ; Beltran-Huarac, Juan ; Weiner, Brad R. ; Morell, Gerardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-aee5797e442195955a9c5428b0da3b82d042ee06a4ca78b9eb087ad3c5231c9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biosensing Techniques - methods</topic><topic>Capping</topic><topic>Central nervous system</topic><topic>Cysteine - chemistry</topic><topic>Dopamine</topic><topic>Dopamine - analysis</topic><topic>Dopamine - urine</topic><topic>Human behavior</topic><topic>Humans</topic><topic>Limit of Detection</topic><topic>Luminescent Measurements - methods</topic><topic>Manganese - chemistry</topic><topic>Mn-doped ZnS</topic><topic>Quantum dots</topic><topic>Quantum Dots - chemistry</topic><topic>Quantum Dots - ultrastructure</topic><topic>Reproducibility of Results</topic><topic>Selectivity</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Sulfides - chemistry</topic><topic>Temperature</topic><topic>Zinc Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diaz-Diestra, Daysi</creatorcontrib><creatorcontrib>Thapa, Bibek</creatorcontrib><creatorcontrib>Beltran-Huarac, Juan</creatorcontrib><creatorcontrib>Weiner, Brad R.</creatorcontrib><creatorcontrib>Morell, Gerardo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diaz-Diestra, Daysi</au><au>Thapa, Bibek</au><au>Beltran-Huarac, Juan</au><au>Weiner, Brad R.</au><au>Morell, Gerardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2017-01-15</date><risdate>2017</risdate><volume>87</volume><spage>693</spage><epage>700</epage><pages>693-700</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Dopamine (DA) is one of the most important catecholamine neurotransmitters of the human central nervous system, and is involved in many behavioral responses and brain functions. Below normal DA levels in biological fluids can lead to different neurodegenerative conditions. For excess DA levels, a failure in energy metabolism is indicated. In this study, a facile room-temperature phosphorescence sensor is developed to detect DA based on l-cysteine capped Mn doped ZnS quantum dots (l-cys ZnS:Mn QDs). The QDs display a prominent orange emission band peaking at ~598nm, which is strongly quenched upon addition of DA in alkaline medium. The sensor exhibits a linear working range of ~0.15–3.00μM, and a limit of detection of ~7.80nM. These results are explained in terms of a pH-dependent electron transfer process, in which the oxidized dopamine quinone functions as an efficient electron acceptor. The QDs-based sensor shows a high selectivity to DA over common interfering biomolecules (including some amino acids, ascorbic acid, chloride and glucose). The sensor has been successfully applied for the detection of DA in urine samples, yielding recoveries as high as 93%. Our findings indicate that our developed sensor exhibits high sensitivity and reproducibility to determine DA even in biological fluids where DA is at low levels, e.g., in the central nervous system, which is the usual clinical profile of a neurodegenerative disorder associated to the Parkinson's disease. [Display omitted] •Dopamine phosphorescence sensor based on L-cys capped ZnS:Mn QDs.•Sensor is highly sensitive at the nanomolar range (limit of detection ~8nM).•QDs phosphorescence is slightly quenched by main interfering analytes.•Method can be applied to determine dopamine in urine or other body fluids.•Sensor can be used for imaging neurodegenerative disorders in the nervous system.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>27631684</pmid><doi>10.1016/j.bios.2016.09.022</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2017-01, Vol.87, p.693-700
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_1864574172
source ScienceDirect Freedom Collection
subjects Biosensing Techniques - methods
Capping
Central nervous system
Cysteine - chemistry
Dopamine
Dopamine - analysis
Dopamine - urine
Human behavior
Humans
Limit of Detection
Luminescent Measurements - methods
Manganese - chemistry
Mn-doped ZnS
Quantum dots
Quantum Dots - chemistry
Quantum Dots - ultrastructure
Reproducibility of Results
Selectivity
Sensitivity
Sensors
Sulfides - chemistry
Temperature
Zinc Compounds - chemistry
title L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T13%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=L-cysteine%20capped%20ZnS:Mn%20quantum%20dots%20for%20room-temperature%20detection%20of%20dopamine%20with%20high%20sensitivity%20and%20selectivity&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Diaz-Diestra,%20Daysi&rft.date=2017-01-15&rft.volume=87&rft.spage=693&rft.epage=700&rft.pages=693-700&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2016.09.022&rft_dat=%3Cproquest_cross%3E1844351785%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c515t-aee5797e442195955a9c5428b0da3b82d042ee06a4ca78b9eb087ad3c5231c9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1844351785&rft_id=info:pmid/27631684&rfr_iscdi=true