Loading…

In vivo adherence of Flavobacterium psychrophilum to mucosal external surfaces of rainbow trout (Oncorhynchus mykiss) fry

The adherence of Flavobacterium psychrophilum to surfaces of epithelial tissues has been inconclusively suggested as a mechanism, which enables the bacterium to invade the host. Hence, the present study aimed to examine the adherence of the cells of two colony phenotypes, smooth and rough, of F. psy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fish diseases 2017-10, Vol.40 (10), p.1309-1320
Main Authors: Papadopoulou, A, Dalsgaard, I, Lindén, A, Wiklund, T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The adherence of Flavobacterium psychrophilum to surfaces of epithelial tissues has been inconclusively suggested as a mechanism, which enables the bacterium to invade the host. Hence, the present study aimed to examine the adherence of the cells of two colony phenotypes, smooth and rough, of F. psychrophilum to mucosal tissues of rainbow trout fry and to test the skin mucus as a nutrient for the growth of F. psychrophilum. Fish were immersed in water containing 106 CFU mL−1 F. psychrophilum for each colony phenotype. Mucosal tissue samples from fins, gills, skin and eyes, and swab samples from spleen and kidney were taken and inoculated onto TYES agar plates. Colony phenotypes of F. psychrophilum were identified and number of colonies counted. The results showed that cells of both phenotypes initially (0 h) adhered to all mucosal surfaces, but only the rough cells were still present on tissues 1 h post‐immersion. Both phenotypes showed a tissue tropism with the fin tissue being the most adhered. Furthermore, skin mucus promoted the growth of both colony phenotypes. We suggest that the growth of F. psychrophilum cells in skin mucus apparently facilitates the bacterial adherence to mucosal surfaces, and the subsequent invasion into the host.
ISSN:0140-7775
1365-2761
DOI:10.1111/jfd.12603