Loading…

Expanding the clinical and genetic spectrum of G6PD deficiency: The occurrence of BCGitis and novel missense mutation

Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway that ensures sufficient production of coenzyme nicotinamide adenine dinucleotide phosphate (NADPH) by catalyzing the reduction of NADP+ to NADPH. Noteworthy, the latter mediates the production of reactive oxyge...

Full description

Saved in:
Bibliographic Details
Published in:Microbial pathogenesis 2017-01, Vol.102, p.160-165
Main Authors: Khan, Taj Ali, Mazhar, Humaira, Nawaz, Mehboob, Kalsoom, Kalsoom, Ishfaq, Muhammad, Asif, Huma, Rahman, Hazir, Qasim, Muhammad, Naz, Farkhanda, Hussain, Mubashir, Khattak, Baharullah, Ullah, Waheed, Cabral-Marques, Otavio, Butt, Jawad, Iqbal, Asif
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway that ensures sufficient production of coenzyme nicotinamide adenine dinucleotide phosphate (NADPH) by catalyzing the reduction of NADP+ to NADPH. Noteworthy, the latter mediates the production of reactive oxygen species (ROS) by phagocytic cells such as neutrophils and monocytes. Therefore, patients with severe forms of G6PD deficiency may present impaired NADPH oxidase activity and become susceptible to recurrent infections. This fact, highlights the importance to characterize the immunopathologic mechanisms underlying the susceptibility to infections in patients with G6PD deficiency. Here we report the first two cases of G6PD deficiency with Bacille Calmette-Guérin (BCG) adverse effect, besides jaundice, hemolytic anemia and recurrent infections caused by Staphylococcus aureus. The qualitative G6PD screening was performed and followed by oxidative burst analysis using flow cytometry. Genetic and in silico analyses were carried out by Sanger sequencing and mutation pathogenicity predicted using bioinformatics tools, respectively. Activated neutrophils and monocytes from patients displayed impaired oxidative burst. The genetic analysis revealed the novel missense mutation c.1157T>A/p.L386Q in G6PD. In addition, in silico analysis indicated that this mutation is pathogenic, thereby hampering the oxidative burst of neutrophils and monocytes from patients. Our data expand the clinical and genetic spectrum of G6PD deficiency, and suggest that impaired oxidative burst in this severe primary immune deficiency is an underlying immunopathologic mechanism that predisposes to mycobacterial infections.
ISSN:0882-4010
1096-1208
DOI:10.1016/j.micpath.2016.11.025