Loading…

Solution Species and Crystal Structure of Zr(IV) Acetate

Complex formation and the coordination of zirconium with acetic acid were investigated with Zr K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) and single-crystal diffraction. Zr K-edge EXAFS spectra show that a stepwise increase of acetic acid in aqueous solution with 0.1 M Zr­(...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry 2017-03, Vol.56 (5), p.2473-2480
Main Authors: Hennig, Christoph, Weiss, Stephan, Kraus, Werner, Kretzschmar, Jerome, Scheinost, Andreas C
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Complex formation and the coordination of zirconium with acetic acid were investigated with Zr K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) and single-crystal diffraction. Zr K-edge EXAFS spectra show that a stepwise increase of acetic acid in aqueous solution with 0.1 M Zr­(IV) leads to a structural rearrangement from initial tetranuclear hydrolysis species [Zr4(OH)8(OH2)16]8+ to a hexanuclear acetate species Zr6(O)4(OH)4(CH3COO)12. The solution species Zr6(O)4(OH)4(CH3COO)12 was preserved in crystals by slow evaporation of the aqueous solution. Single-crystal diffraction reveals an uncharged hexanuclear cluster in solid Zr6(μ3-O)4(μ3-OH)4(CH3COO)12·8.5H2O. EXAFS measurements show that the structures of the hexanuclear zirconium acetate cluster in solution and the solid state are identical.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.6b01624