Loading…

Detection of C8-(1-Hydroxyethyl)guanine in Liver RNA and DNA from Control and Ethanol-Treated Rats

Alcohol consumption is associated with an increased risk of cancer by mechanisms that remain unknown but have been suggested to involve radical metabolites. We have previously shown that the 1-hydroxyethyl radical produced from ethanol oxidation in vitro is able to alkylate nucleic acids to produce...

Full description

Saved in:
Bibliographic Details
Published in:Chemical research in toxicology 2002-10, Vol.15 (10), p.1248-1253
Main Authors: Nakao, Lia S, Fonseca, Elaine, Augusto, Ohara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alcohol consumption is associated with an increased risk of cancer by mechanisms that remain unknown but have been suggested to involve radical metabolites. We have previously shown that the 1-hydroxyethyl radical produced from ethanol oxidation in vitro is able to alkylate nucleic acids to produce C8-(1-hydroxyethyl)guanine [C8-(1-HE)gua] among other products. To assess if this adduct is produced in vivo, we developed a sensitive HPLC-MS/MS method for its detection and analyzed hydrolysates of liver RNA and DNA from control and ethanol-treated rats. Unexpectedly, C8-(1-HE)gua was found to be present in both RNA and DNA from the liver of control Sprague−Dawley rats, and its levels increased slightly, but not significantly, after an acute ethanol dose (5 g/kg). In rat liver, C8-(1-HE)gua endogenous levels were about 10 times higher in RNA (35 ± 5/107 guanine) than DNA (3.7 ± 1.1/107 guanine). These levels were also found in commercial RNA (calf liver and yeast) and DNA (calf thymus), further indicating the endogenous source of the adduct. DNA basal levels of C8-(1-HE)gua were similar to those reported for other 2C guanine adducts such as N7-(2-hydroxyethyl)guanine and N2-ethyl-2‘-deoxyguanosine. We speculate that all of these adducts may be generated from DNA attack by products of basal lipid peroxidation. The higher RNA levels of C8-(1-HE)gua are in agreement with the higher accessibility of RNA and nucleotides to reactive intermediates because they are not as protected or as localized as DNA. Chemical modification of RNA has been receiving increasingly attention as an important event in genotoxic mechanisms. Comparison of RNA basal levels of C8-(1-HE)gua, N7-(2-hydroxyethyl)guanine, and N2-ethyl-2‘-deoxyguanosine may provide clues about their endogenous sources and biological significance. Yet, the marginal increase of DNA C8-(1-HE)gua upon ethanol administration argues against this adduct playing a major role in the carcinogenic effects of ethanol.
ISSN:0893-228X
1520-5010
DOI:10.1021/tx0255166