Loading…
Protein phosphatase 2A plays an important role in migration of bone marrow stroma cells
Administration of bone marrow stroma cells (BMSCs) has the potential to ameliorate degenerative disorders and to repair injured sites. The homing of transplanted BMSCs to damaged tissues is a critical property of engraftment. Therefore, it is important to understand signal molecules controlling migr...
Saved in:
Published in: | Molecular and cellular biochemistry 2016-01, Vol.412 (1-2), p.173-180 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Administration of bone marrow stroma cells (BMSCs) has the potential to ameliorate degenerative disorders and to repair injured sites. The homing of transplanted BMSCs to damaged tissues is a critical property of engraftment. Therefore, it is important to understand signal molecules controlling migration of BMSCs. Here, we demonstrate that serine-threonine protein phosphatase 2A (PP2A) is responsive to migration of BMSCs. Pharmacological Inhibition of PP2A, using okadaic acid (OA), leads to attenuated cell migration in rat primary BMSCs both in the absence or presence of stromal cell-derived factor-1 (SDF-1). Consistent with the above findings, knockdown of the main catalytic subunit PP2Acα using small interfering RNA also attenuates chemotaxis of BMSCs. On the other hand, cell viability of BMSCs remains unchanged with OA treatment or knockdown of PP2Acα subunit. Moreover, we observed an upregulation of PP2A-B55β in transcription level after SDF-1 treatment, indicating their potential role as the functioning regulatory subunit of PP2A phosphatase in BMSCs migration model. Collectively, these data provide first insight into the modulation of BMSCs migration by PP2A phosphatase activity and lay a foundation for exploring PP2A signaling as a modulating target for BMSCs transplantation. |
---|---|
ISSN: | 0300-8177 1573-4919 |
DOI: | 10.1007/s11010-015-2624-7 |