Loading…

A Density-Based Clustering Approach to Motor Unit Potential Characterizations to Support Diagnosis of Neuromuscular Disorders

Electrophysiological muscle classification involves characterization of extracted motor unit potentials (MUPs) followed by the aggregation of these MUP characterizations. Existing techniques consider three classes (i.e., myopathic, neurogenic, and normal) for both MUP characterization and electrophy...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2017-07, Vol.25 (7), p.956-966
Main Authors: Kamali, Tahereh, Stashuk, Daniel W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electrophysiological muscle classification involves characterization of extracted motor unit potentials (MUPs) followed by the aggregation of these MUP characterizations. Existing techniques consider three classes (i.e., myopathic, neurogenic, and normal) for both MUP characterization and electrophysiological muscle classification. However, diseased-induced MUP changes are continuous in nature, which make it difficult to find distinct boundaries between normal, myopathic, and neurogenic MUPs. Hence, MUP characterization based on more than three classes is better able to represent the various effects of disease. Here, a novel, electrophysio- logical muscle classification system is proposed, which considers a dynamic number of classes for characterizing MUPs. To this end, a clustering algorithm called neighbor- hood distances entropy consistency is proposed to find clusters with arbitrary shapes and densities in an MUP feature space. These clusters represent several concepts of MUP normality and abnormality and are used for MUP characterization instead of the conventional three classes. An examined muscle is then classified by embedding its MUP characterizations in a feature vector fed to an ensemble of support vector machine and nearest neighbor classifiers. For 103 sets of MUPs recorded in tibialis anterior muscles, the proposed system had a 97% electro-physiological muscle classification accuracy, which is significantly higher than in previous works.
ISSN:1534-4320
1558-0210
DOI:10.1109/TNSRE.2017.2673664