Loading…

Characterization of genetic determinants involved in antibiotic resistance in Aeromonas spp. and fecal coliforms isolated from different aquatic environments

Aeromonas spp. and fecal coliforms, two abundant and cultivable bacterial populations that can be found in water ecosystems, might substantially contribute to the spread of antibiotic resistance. We investigated the presence and spread of transposons (elements that can move from one location to anot...

Full description

Saved in:
Bibliographic Details
Published in:Research in microbiology 2017-06, Vol.168 (5), p.461-471
Main Authors: Carnelli, Alessandro, Mauri, Federica, Demarta, Antonella
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aeromonas spp. and fecal coliforms, two abundant and cultivable bacterial populations that can be found in water ecosystems, might substantially contribute to the spread of antibiotic resistance. We investigated the presence and spread of transposons (elements that can move from one location to another in the genome), integrons (structures able to capture and incorporate gene cassettes) and resistance plasmids in strains isolated from polluted and unpolluted water. We recovered 231 Aeromonas and 250 fecal coliforms from water samplings with different degrees of pollution (hospital sewage, activated sludge of a wastewater treatment plant, river water before and after treatment and water from an alpine lake). Sixteen Aeromonas spp. and 22 fecal coliforms carried intI, coding for the site-specific integrase of class 1 integrons, while 22 Aeromonas spp. and 14 fecal coliforms carried tnpA, the transposase gene of the Tn3-family of replicative transposons. The majority of intI and tnpA-positive strains were phenotypically resistant to at least four antibiotics. Integrons and transposons were mainly located on mobilizable plasmids. Our results did not detect common mobile structures in the two populations and therefore relativize the role played by Aeromonas spp. as vectors of antimicrobial resistance determinants between water and commensal gut bacteria.
ISSN:0923-2508
1769-7123
DOI:10.1016/j.resmic.2017.02.006