Loading…

Detection of chewing from piezoelectric film sensor signals using ensemble classifiers

Selection and use of pattern recognition algorithms is application dependent. In this work, we explored the use of several ensembles of weak classifiers to classify signals captured from a wearable sensor system to detect food intake based on chewing. Three sensor signals (Piezoelectric sensor, acce...

Full description

Saved in:
Bibliographic Details
Main Authors: Farooq, Muhammad, Sazonov, Edward
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Selection and use of pattern recognition algorithms is application dependent. In this work, we explored the use of several ensembles of weak classifiers to classify signals captured from a wearable sensor system to detect food intake based on chewing. Three sensor signals (Piezoelectric sensor, accelerometer, and hand to mouth gesture) were collected from 12 subjects in free-living conditions for 24 hrs. Sensor signals were divided into 10 seconds epochs and for each epoch combination of time and frequency domain features were computed. In this work, we present a comparison of three different ensemble techniques: boosting (AdaBoost), bootstrap aggregation (bagging) and stacking, each trained with 3 different weak classifiers (Decision Trees, Linear Discriminant Analysis (LDA) and Logistic Regression). Type of feature normalization used can also impact the classification results. For each ensemble method, three feature normalization techniques: (no-normalization, z-score normalization, and minmax normalization) were tested. A 12 fold cross-validation scheme was used to evaluate the performance of each model where the performance was evaluated in terms of precision, recall, and accuracy. Best results achieved here show an improvement of about 4% over our previous algorithms.
ISSN:1557-170X
2694-0604
DOI:10.1109/EMBC.2016.7591833