Loading…

The role of phase changes in sound signals in localization of sound sources

The auditory system in humans and animals makes virtually no discrimination of phase changes in the structure of monaurally presented sound signals. However, electrophysiological studies have demonstrated marked changes in the responses of the central parts of the auditory system when the phase stru...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience and behavioral physiology 2004-10, Vol.34 (8), p.765-771
Main Authors: Al'tman, Ya A, Bekhterev, N N, Vaitulevich, S F, Nikitin, N I
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The auditory system in humans and animals makes virtually no discrimination of phase changes in the structure of monaurally presented sound signals. However, electrophysiological studies have demonstrated marked changes in the responses of the central parts of the auditory system when the phase structure of the signal changes during presentation of the same type of stimulation. We have suggested that this inconsistency is due to the preparative role of phase effects during monaural stimulation for subsequent operations in the auditory system involved in determining the location of a sound source in space. This report presents experimental data on defined changes (increases in amplitude) in the electrical responses of the midbrain center of the auditory system (inferior colliculus) in antiphase binaural presentation of series of sound impulses (comparison with synphase presentation). These changes may be part of the mechanism underlying the interference resistance of the auditory system during determination of the location of a sound source (binaural release from masking). Neuronal cortical activity is sensitive and selective to dynamic interaural changes in the phase spectrum of the signal, which may provide the basis of the mechanism for locating a moving sound source. Auditory evoked potentials in humans demonstrate memorizing of the direction of movement of a sound image, as shown by the changes in parameters on presentation of stimuli of different locations (deviant stimuli) differing from the standard parameters of mismatch negativity.
ISSN:0097-0549
1573-899X
DOI:10.1023/b:neab.0000038126.87407.0c