Loading…
A semi-empirical glycosylation model of a camelid monoclonal antibody under hypothermia cell culture conditions
The impact of cell culture environment on the glycan distribution of a monoclonal antibody (mAb) has been investigated through a combination of experiments and modeling. A newly developed CHO DUXB cell line was cultivated at two levels of initial Glutamine (Gln) concentrations (0, 4 mM) and incubati...
Saved in:
Published in: | Journal of industrial microbiology & biotechnology 2017-07, Vol.44 (7), p.1005-1020 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The impact of cell culture environment on the glycan distribution of a monoclonal antibody (mAb) has been investigated through a combination of experiments and modeling. A newly developed CHO DUXB cell line was cultivated at two levels of initial Glutamine (Gln) concentrations (0, 4 mM) and incubation temperatures of (33 and 37 °C) in batch operation mode. Hypothermia was applied either through the entire culture duration or only during the post-exponential phase. Beyond reducing cell growth and increasing productivity, hypothermia significantly altered the galactosylation index profiles as compared to control conditions. A novel semi-empirical dynamic model was proposed for elucidating the connections between the extracellular cell culture conditions to galactosylation index. The developed model is based on a simplified balance of nucleotides sugars and on the correlation between sugars’ levels to the galactosylation index (GI). The model predictions were found to be in a good agreement with the experimental data. The proposed empirical model is expected to be useful for controlling the glycoprofiles by manipulating culture conditions. |
---|---|
ISSN: | 1367-5435 1476-5535 |
DOI: | 10.1007/s10295-017-1926-z |