Loading…
Impact of early prehistoric farming on chironomid communities in northwest Ireland
This study explored the utility and performance of chironomid (Diptera: Chironomidae) autecology in the investigation of prehistoric farming impacts on freshwater lake systems. Chironomid subfossils, lake sediment geochemistry (δ 13 C, δ 15 N and C:N), pollen and macroscopic charcoal analyses were u...
Saved in:
Published in: | Journal of paleolimnology 2017-03, Vol.57 (3), p.227-244 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study explored the utility and performance of chironomid (Diptera: Chironomidae) autecology in the investigation of prehistoric farming impacts on freshwater lake systems. Chironomid subfossils, lake sediment geochemistry (δ
13
C, δ
15
N and C:N), pollen and macroscopic charcoal analyses were used in a comparative limnological assessment of three archaeologically rich study sites in northwest Ireland. At all three study sites, pastoral farming and its associated nutrient inputs, as represented by non-arboreal pollen indicative of grassland/pasture (NAPp) and lake sediment geochemistry, are concomitant with increases in eutrophic chironomid taxa. Redundancy analysis (RDA) and partial RDAs established that δ
15
N and NAPp were controlling factors of chironomid community compositional change during the Neolithic (4000–2500 BC) and Bronze Age (2500–600 BC). Bronze Age farming had a considerably greater impact on the lake systems than Neolithic farming, as indicated by a higher proportion of eutrophic taxa and increases in δ
15
N, C:N and δ
13
C values, consistent with increased erosion and agricultural inputs. Findings emphasise the importance of identifying the natural, pre-impacted state of a lake system to determine the extent of agricultural impact accurately. The timing and magnitude of change show that Neolithic and Bronze Age farming exhibited a strong control over chironomid communities at all three sites. |
---|---|
ISSN: | 0921-2728 1573-0417 |
DOI: | 10.1007/s10933-017-9942-6 |