Loading…

Effects of mammal and insect herbivory on population dynamics of a native Californian thistle, Cirsium occidentale

We explored consequences of spatial and temporal heterogeneity in herbivory on the survival, growth, and reproduction of the Californian native dune thistle, Cirsium occidentale, in coastal and inland sites, for 2 years. We assessed the relative impacts of insect and mammalian herbivores and compare...

Full description

Saved in:
Bibliographic Details
Published in:Oecologia 1997-07, Vol.111 (3), p.413-421
Main Authors: Palmisano, S, Fox, L.R
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We explored consequences of spatial and temporal heterogeneity in herbivory on the survival, growth, and reproduction of the Californian native dune thistle, Cirsium occidentale, in coastal and inland sites, for 2 years. We assessed the relative impacts of insect and mammalian herbivores and compared the relative importance of herbivory in coastal and inland habitats and among locations with different microclimates across a coastal dune. Effects of insect and mammalian herbivores were tested with a combination of insecticidal spray and cage exclusion treatments in a factorial experiment at the coastal site. Mammalian herbivores strongly affected the population dynamics of C. occidentale in both years, and their effects were augmented by fungal infection (1991), herbivory by stem-borers (1990) and, to a lesser extent, by insect seed predators in both years. Mammals caused most plant deaths, but the mammal species responsible differed among sites. Rabbit herbivory altered the vegetative growth of coastal thistles and significantly modified other key aspects of Cirsium demography, including growth rate and timing of reproduction. Small, uncaged plants grazed by rabbits took at least 1 year longer to mature than did caged plants. Larvae of Pyrausta subsequalis were the only insects that killed established plants. In 1990 and 1991, the numbers of insects damaging seed heads before dispersal were low, but were sufficient to cause receptacle and seed damage. The number of mature, undamaged seeds (and percent successful seed production) was reduced significantly only for heads infested by fungi near the ocean in 1991: the fungus occurred in 37% of heads and caused a 77% reduction in mature seeds.
ISSN:0029-8549
1432-1939
DOI:10.1007/s004420050253