Loading…
Detection and localization of gold nanoshells inside cells: near-field approximation
The optical properties of metal nanoparticles play a fundamental role for their use in a wide range of applications. In hyperthermia treatment, for example, gold nanoshells (NSs, dielectric core+gold shell) pre-embedded in a cancer cell absorb energy when exposed to appropriate wavelengths of a lase...
Saved in:
Published in: | Applied optics (2004) 2016-12, Vol.55 (34), p.D11-D16 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The optical properties of metal nanoparticles play a fundamental role for their use in a wide range of applications. In hyperthermia treatment, for example, gold nanoshells (NSs, dielectric core+gold shell) pre-embedded in a cancer cell absorb energy when exposed to appropriate wavelengths of a laser beam and heat up, thereby destroying the cancer cell. In this process, nevertheless, healthy tissues (not targeted by the NSs) along the laser path are not affected; this is because most biological soft tissues have a relatively low light absorption coefficient in the near-infrared (NIR) regions-a characteristic known as the tissue optical window. Over such a window, NIR light transmits through the tissues with scattering-limited attenuation and minimal heating, thereby avoiding damage to healthy tissues. As a consequence, the identification of NSs assumed a fundamental role for the further development of such cancer treatment. Recently, we have demonstrated the possibility to identify 100-150 nm diameter gold NSs inside mouse cells using a scanning near-optical microscope (SNOM). In this paper, we provide a numerical demonstration that the SNOM is able to locate NSs inside the cell with a particle-aperture distance of about 100 nm. This result was obtained by developing an analytical approach based on the calculation of the dyadic Green function in the near-field approximation. The implications of our findings will remarkably affect further investigations on the interaction between NSs and biological systems. |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.55.000D11 |