Loading…

An injectable poly(caprolactone trifumarate-gelatin microparticles) (PCLTF-GMPs) scaffold for irregular bone defects: Physical and mechanical characteristics

Recently, a modified form of a three-dimension (3D) porous poly(caprolactone-trifumarate) (PCLTF) scaffold has been produced using a fabrication technique that involves gelatin microparticles porogen leaching. This poly(caprolactone trifumarate-gelatin microparticles) (PCLTF-GMPs) scaffold has been...

Full description

Saved in:
Bibliographic Details
Published in:Materials Science & Engineering C 2017-03, Vol.72, p.332-340
Main Authors: Al-Namnam, Nisreen Mohammed, Kutty, Muralithran Govindan, Chai, Wen Lin, Ha, Kien Oon, Kim, Kah Hwi, Siar, Chong Huat, Ngeow, Wei Cheong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, a modified form of a three-dimension (3D) porous poly(caprolactone-trifumarate) (PCLTF) scaffold has been produced using a fabrication technique that involves gelatin microparticles porogen leaching. This poly(caprolactone trifumarate-gelatin microparticles) (PCLTF-GMPs) scaffold has been shown to be biocompatible, more flowable clinically, and has a shorter degradation time as compared to its existing predecessors. In this report, a detailed characterization of this new scaffold was performed by testing its cytocompatibility, analyzing the surface topography, and understanding its thermal, physical and mechanical properties. The result showed that the PCLTF-GMPs has no critical cytotoxic effect. To confirm improvement, the surface properties were compared against the older version of PCLTF fabricated using salt porogen leaching. This PCLTF-GMPs scaffold showed no significant difference (unpaired t-test; p>0.05) in mechanical properties before and after gelatin leaching. However, it is mechanically weaker when compared to its predecessors. It has a high biodegradability rate of 16weeks. The pore size produced ranges from 40 to 300μm, and the RMS roughness is 613.7±236.9nm. These characteristics are condusive for osteoblast in-growth, as observed by the extension of filopodia across the macropores. Overall, this newly produced material has good thermal, physical and mechanical properties that complements its biocompatibility and ease of use. •A modified white PCLTF-GMPs was synthesized.•The PCLTF-GMPs has no critical cytotoxic effect.•This newly produced material has good thermal, physical and mechanical properties.•When GMPs leaching method was used, the scaffold retains its stability.
ISSN:0928-4931
1873-0191
DOI:10.1016/j.msec.2016.11.086