Loading…

A head-to-head comparison between CT- and IVUS-derived coronary blood flow models

Abstract The goal of this work is to compare coronary hemodynamics as predicted by computational blood flow models derived from two imaging modalities: coronary computed tomography angiography (CCTA) and intravascular ultrasound integrated with angiography (IVUS). Criteria to define boundary conditi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics 2017-01, Vol.51, p.65-76
Main Authors: Bulant, C.A, Blanco, P.J, Maso Talou, G.D, Bezerra, C. Guedes, Lemos, P.A, Feijóo, R.A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-dabcef9afa23223cfc8e8fbc820742dea51d62d7f4ddd0c213c6c652d9a0d1d23
cites cdi_FETCH-LOGICAL-c517t-dabcef9afa23223cfc8e8fbc820742dea51d62d7f4ddd0c213c6c652d9a0d1d23
container_end_page 76
container_issue
container_start_page 65
container_title Journal of biomechanics
container_volume 51
creator Bulant, C.A
Blanco, P.J
Maso Talou, G.D
Bezerra, C. Guedes
Lemos, P.A
Feijóo, R.A
description Abstract The goal of this work is to compare coronary hemodynamics as predicted by computational blood flow models derived from two imaging modalities: coronary computed tomography angiography (CCTA) and intravascular ultrasound integrated with angiography (IVUS). Criteria to define boundary conditions are proposed to overcome the dissimilar anatomical definition delivered by both modalities. The strategy to define boundary conditions is novel in the present context, and naturally accounts for the flow redistribution induced by the resistance of coronary vessels. Hyperemic conditions are assumed to assess model predictions under stressed hemodynamic environments similar to those encountered in Fractional Flow Reserve (FFR) calculations. As results, it was found that CCTA models predict larger pressure drops, higher average blood velocity and smaller FFR. Concerning the flow rate at distal locations in the major vessels of interest, it was found that CCTA predicted smaller flow than IVUS, which is a consequence of a larger sensitivity of CCTA models to coronary steal phenomena. Comparisons to in-vivo measurements of FFR are shown.
doi_str_mv 10.1016/j.jbiomech.2016.11.070
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880017751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192901631260X</els_id><sourcerecordid>1880017751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-dabcef9afa23223cfc8e8fbc820742dea51d62d7f4ddd0c213c6c652d9a0d1d23</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EotvCX6giceGSMGNv7OSCqFalVKqEUFvEzXLsieqQxIudbdV_T8K2IPVCT6ORnnnn4x3GjhEKBJQfuqJrfBjI3hR8zgvEAhS8YCuslMi5qOAlWwFwzGtewwE7TKkDALVW9Wt2wFUtalWKFft2kt2QcfkU8iVmNgxbE30KY9bQdEc0ZpurPDOjy86_X1_mjqK_pYWLYTTxPmv6EFzW9uEuG4KjPr1hr1rTJ3r7EI_Y9efTq82X_OLr2fnm5CK3Jaopd6ax1NamNVxwLmxrK6raxlZ8HpI7MiU6yZ1q1845sByFlVaW3NUGHDoujtj7ve42hl87SpMefLLU92aksEsaqwoAlSrxGWhZrytV8vo5KJdyXSqY0XdP0C7s4jjvvFClACmUmCm5p2wMKUVq9Tb6Yb6cRtCLlbrTj1bqxUqNqOGP_PGD_K4ZyP0te_RuBj7tgfnodOsp6mQ9jZacj2Qn7YL_f4-PTyRs70dvTf-T7in920cnrkFfLg-1_BNKgVzCD_EbYnHGCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855306373</pqid></control><display><type>article</type><title>A head-to-head comparison between CT- and IVUS-derived coronary blood flow models</title><source>ScienceDirect Journals</source><creator>Bulant, C.A ; Blanco, P.J ; Maso Talou, G.D ; Bezerra, C. Guedes ; Lemos, P.A ; Feijóo, R.A</creator><creatorcontrib>Bulant, C.A ; Blanco, P.J ; Maso Talou, G.D ; Bezerra, C. Guedes ; Lemos, P.A ; Feijóo, R.A</creatorcontrib><description>Abstract The goal of this work is to compare coronary hemodynamics as predicted by computational blood flow models derived from two imaging modalities: coronary computed tomography angiography (CCTA) and intravascular ultrasound integrated with angiography (IVUS). Criteria to define boundary conditions are proposed to overcome the dissimilar anatomical definition delivered by both modalities. The strategy to define boundary conditions is novel in the present context, and naturally accounts for the flow redistribution induced by the resistance of coronary vessels. Hyperemic conditions are assumed to assess model predictions under stressed hemodynamic environments similar to those encountered in Fractional Flow Reserve (FFR) calculations. As results, it was found that CCTA models predict larger pressure drops, higher average blood velocity and smaller FFR. Concerning the flow rate at distal locations in the major vessels of interest, it was found that CCTA predicted smaller flow than IVUS, which is a consequence of a larger sensitivity of CCTA models to coronary steal phenomena. Comparisons to in-vivo measurements of FFR are shown.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2016.11.070</identifier><identifier>PMID: 27939753</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Aged ; Angiography ; Bias ; Blood flow ; Blood vessels ; Boundary conditions ; Computed tomography ; Coronary Angiography ; Coronary blood flow ; Coronary Circulation ; Coronary vessels ; Coronary Vessels - physiology ; Female ; Fractional flow reserve ; Fractional Flow Reserve, Myocardial ; Heart - physiology ; Heart rate ; Hemodynamics ; Humans ; Intravascular ultrasound ; Male ; Mathematical models ; Medical imaging ; Middle Aged ; Models, Cardiovascular ; Patients ; Physical Medicine and Rehabilitation ; Predictions ; Reserves ; Simulation ; Standard deviation ; Statistical analysis ; Studies ; Tomography, X-Ray Computed ; Ultrasonography ; Veins &amp; arteries ; Wall shear stress</subject><ispartof>Journal of biomechanics, 2017-01, Vol.51, p.65-76</ispartof><rights>Elsevier Ltd</rights><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-dabcef9afa23223cfc8e8fbc820742dea51d62d7f4ddd0c213c6c652d9a0d1d23</citedby><cites>FETCH-LOGICAL-c517t-dabcef9afa23223cfc8e8fbc820742dea51d62d7f4ddd0c213c6c652d9a0d1d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27939753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bulant, C.A</creatorcontrib><creatorcontrib>Blanco, P.J</creatorcontrib><creatorcontrib>Maso Talou, G.D</creatorcontrib><creatorcontrib>Bezerra, C. Guedes</creatorcontrib><creatorcontrib>Lemos, P.A</creatorcontrib><creatorcontrib>Feijóo, R.A</creatorcontrib><title>A head-to-head comparison between CT- and IVUS-derived coronary blood flow models</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract The goal of this work is to compare coronary hemodynamics as predicted by computational blood flow models derived from two imaging modalities: coronary computed tomography angiography (CCTA) and intravascular ultrasound integrated with angiography (IVUS). Criteria to define boundary conditions are proposed to overcome the dissimilar anatomical definition delivered by both modalities. The strategy to define boundary conditions is novel in the present context, and naturally accounts for the flow redistribution induced by the resistance of coronary vessels. Hyperemic conditions are assumed to assess model predictions under stressed hemodynamic environments similar to those encountered in Fractional Flow Reserve (FFR) calculations. As results, it was found that CCTA models predict larger pressure drops, higher average blood velocity and smaller FFR. Concerning the flow rate at distal locations in the major vessels of interest, it was found that CCTA predicted smaller flow than IVUS, which is a consequence of a larger sensitivity of CCTA models to coronary steal phenomena. Comparisons to in-vivo measurements of FFR are shown.</description><subject>Aged</subject><subject>Angiography</subject><subject>Bias</subject><subject>Blood flow</subject><subject>Blood vessels</subject><subject>Boundary conditions</subject><subject>Computed tomography</subject><subject>Coronary Angiography</subject><subject>Coronary blood flow</subject><subject>Coronary Circulation</subject><subject>Coronary vessels</subject><subject>Coronary Vessels - physiology</subject><subject>Female</subject><subject>Fractional flow reserve</subject><subject>Fractional Flow Reserve, Myocardial</subject><subject>Heart - physiology</subject><subject>Heart rate</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Intravascular ultrasound</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Models, Cardiovascular</subject><subject>Patients</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Predictions</subject><subject>Reserves</subject><subject>Simulation</subject><subject>Standard deviation</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Tomography, X-Ray Computed</subject><subject>Ultrasonography</subject><subject>Veins &amp; arteries</subject><subject>Wall shear stress</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkk1v1DAQhi0EotvCX6giceGSMGNv7OSCqFalVKqEUFvEzXLsieqQxIudbdV_T8K2IPVCT6ORnnnn4x3GjhEKBJQfuqJrfBjI3hR8zgvEAhS8YCuslMi5qOAlWwFwzGtewwE7TKkDALVW9Wt2wFUtalWKFft2kt2QcfkU8iVmNgxbE30KY9bQdEc0ZpurPDOjy86_X1_mjqK_pYWLYTTxPmv6EFzW9uEuG4KjPr1hr1rTJ3r7EI_Y9efTq82X_OLr2fnm5CK3Jaopd6ax1NamNVxwLmxrK6raxlZ8HpI7MiU6yZ1q1845sByFlVaW3NUGHDoujtj7ve42hl87SpMefLLU92aksEsaqwoAlSrxGWhZrytV8vo5KJdyXSqY0XdP0C7s4jjvvFClACmUmCm5p2wMKUVq9Tb6Yb6cRtCLlbrTj1bqxUqNqOGP_PGD_K4ZyP0te_RuBj7tgfnodOsp6mQ9jZacj2Qn7YL_f4-PTyRs70dvTf-T7in920cnrkFfLg-1_BNKgVzCD_EbYnHGCg</recordid><startdate>20170125</startdate><enddate>20170125</enddate><creator>Bulant, C.A</creator><creator>Blanco, P.J</creator><creator>Maso Talou, G.D</creator><creator>Bezerra, C. Guedes</creator><creator>Lemos, P.A</creator><creator>Feijóo, R.A</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20170125</creationdate><title>A head-to-head comparison between CT- and IVUS-derived coronary blood flow models</title><author>Bulant, C.A ; Blanco, P.J ; Maso Talou, G.D ; Bezerra, C. Guedes ; Lemos, P.A ; Feijóo, R.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-dabcef9afa23223cfc8e8fbc820742dea51d62d7f4ddd0c213c6c652d9a0d1d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aged</topic><topic>Angiography</topic><topic>Bias</topic><topic>Blood flow</topic><topic>Blood vessels</topic><topic>Boundary conditions</topic><topic>Computed tomography</topic><topic>Coronary Angiography</topic><topic>Coronary blood flow</topic><topic>Coronary Circulation</topic><topic>Coronary vessels</topic><topic>Coronary Vessels - physiology</topic><topic>Female</topic><topic>Fractional flow reserve</topic><topic>Fractional Flow Reserve, Myocardial</topic><topic>Heart - physiology</topic><topic>Heart rate</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Intravascular ultrasound</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Models, Cardiovascular</topic><topic>Patients</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Predictions</topic><topic>Reserves</topic><topic>Simulation</topic><topic>Standard deviation</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Tomography, X-Ray Computed</topic><topic>Ultrasonography</topic><topic>Veins &amp; arteries</topic><topic>Wall shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bulant, C.A</creatorcontrib><creatorcontrib>Blanco, P.J</creatorcontrib><creatorcontrib>Maso Talou, G.D</creatorcontrib><creatorcontrib>Bezerra, C. Guedes</creatorcontrib><creatorcontrib>Lemos, P.A</creatorcontrib><creatorcontrib>Feijóo, R.A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bulant, C.A</au><au>Blanco, P.J</au><au>Maso Talou, G.D</au><au>Bezerra, C. Guedes</au><au>Lemos, P.A</au><au>Feijóo, R.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A head-to-head comparison between CT- and IVUS-derived coronary blood flow models</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2017-01-25</date><risdate>2017</risdate><volume>51</volume><spage>65</spage><epage>76</epage><pages>65-76</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract The goal of this work is to compare coronary hemodynamics as predicted by computational blood flow models derived from two imaging modalities: coronary computed tomography angiography (CCTA) and intravascular ultrasound integrated with angiography (IVUS). Criteria to define boundary conditions are proposed to overcome the dissimilar anatomical definition delivered by both modalities. The strategy to define boundary conditions is novel in the present context, and naturally accounts for the flow redistribution induced by the resistance of coronary vessels. Hyperemic conditions are assumed to assess model predictions under stressed hemodynamic environments similar to those encountered in Fractional Flow Reserve (FFR) calculations. As results, it was found that CCTA models predict larger pressure drops, higher average blood velocity and smaller FFR. Concerning the flow rate at distal locations in the major vessels of interest, it was found that CCTA predicted smaller flow than IVUS, which is a consequence of a larger sensitivity of CCTA models to coronary steal phenomena. Comparisons to in-vivo measurements of FFR are shown.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>27939753</pmid><doi>10.1016/j.jbiomech.2016.11.070</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2017-01, Vol.51, p.65-76
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_1880017751
source ScienceDirect Journals
subjects Aged
Angiography
Bias
Blood flow
Blood vessels
Boundary conditions
Computed tomography
Coronary Angiography
Coronary blood flow
Coronary Circulation
Coronary vessels
Coronary Vessels - physiology
Female
Fractional flow reserve
Fractional Flow Reserve, Myocardial
Heart - physiology
Heart rate
Hemodynamics
Humans
Intravascular ultrasound
Male
Mathematical models
Medical imaging
Middle Aged
Models, Cardiovascular
Patients
Physical Medicine and Rehabilitation
Predictions
Reserves
Simulation
Standard deviation
Statistical analysis
Studies
Tomography, X-Ray Computed
Ultrasonography
Veins & arteries
Wall shear stress
title A head-to-head comparison between CT- and IVUS-derived coronary blood flow models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20head-to-head%20comparison%20between%20CT-%20and%20IVUS-derived%20coronary%20blood%20flow%20models&rft.jtitle=Journal%20of%20biomechanics&rft.au=Bulant,%20C.A&rft.date=2017-01-25&rft.volume=51&rft.spage=65&rft.epage=76&rft.pages=65-76&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2016.11.070&rft_dat=%3Cproquest_cross%3E1880017751%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-dabcef9afa23223cfc8e8fbc820742dea51d62d7f4ddd0c213c6c652d9a0d1d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1855306373&rft_id=info:pmid/27939753&rfr_iscdi=true