Loading…
Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods
The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed by Bai and Li (2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li (2014). We put forward two improvements to the met...
Saved in:
Published in: | Science China. Mathematics 2016-08, Vol.59 (8), p.1443-1460 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed by Bai and Li (2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li (2014). We put forward two improvements to the method: A shifting deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate away converged eigenpairs from future computation, and the idea of extending the search subspace increases convergence rate per iterative step. The resulting algorithm is called the extended LOBP4dCG (ELOBP4dCG). Numerical results of the ELOBP4dCG strongly demonstrate the capability of deflation technique and effec- tiveness the search space extension for solving linear response eigenvalue problems arising from linear response analysis of two molecule systems. |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-016-0297-1 |