Loading…
Nat3p and Mdm20p Are Required for Function of Yeast NatB Nα-terminal Acetyltransferase and of Actin and Tropomyosin
NatB Nα-terminal acetyltransferase of Saccharomyces cerevisiae acts cotranslationally on proteins with Met-Glu- or Met-Asp- termini and subclasses of proteins with Met-Asn- and Met-Met- termini. NatB is composed of the interacting Nat3p and Mdm20p subunits, both of which are required for acetyltrans...
Saved in:
Published in: | The Journal of biological chemistry 2003-08, Vol.278 (33), p.30686-30697 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | NatB Nα-terminal acetyltransferase of Saccharomyces cerevisiae acts cotranslationally on proteins with Met-Glu- or Met-Asp- termini and subclasses of proteins with Met-Asn- and Met-Met- termini. NatB is composed of the interacting Nat3p and Mdm20p subunits, both of which are required for acetyltransferase activity. The phenotypes of nat3-Δ and mdm20-Δ mutants are identical or nearly the same and include the following: diminished growth at elevated temperatures and on hyperosmotic and nonfermentable media; diminished mating; defective actin cables formation; abnormal mitochondrial and vacuolar inheritance; inhibition of growth by DNA-damaging agents such as methyl methanesulfonate, bleomycin, camptothecin, and hydroxyurea; and inhibition of growth by the antimitotic drugs benomyl and thiabendazole. The similarity of these phenotypes to the phenotypes of certain act1 and tpm1 mutants suggests that such multiple defects are caused by the lack of acetylation of actin and tropomyosins. However, the lack of acetylation of other unidentified proteins conceivably could cause the same phenotypes. Furthermore, unacetylated actin and certain N-terminally altered actins have comparable defective properties in vitro, particularly actin-activated ATPase activity and sliding velocity. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M304690200 |