Loading…
Toll/IL-1 Receptor Domain-Containing Adaptor Inducing IFN-{beta} (TRIF) Associates with TNF Receptor-Associated Factor 6 and TANK-Binding Kinase 1, and Activates Two Distinct Transcription Factors, NF-{kappa}B and IFN-Regulatory Factor-3, in the Toll-Like Receptor Signaling
We previously reported a new Toll/IL-1R (TIR)-containing molecule, named TIR domain-containing adaptor inducing IFN-[beta] (TRIF). Although initial study indicated that TRIF possesses the ability to activate not only the NF-[kappa]B- dependent but also the IFN-[beta] promoters, the molecular mechani...
Saved in:
Published in: | The Journal of immunology (1950) 2003-10, Vol.171 (8), p.4304-4310 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We previously reported a new Toll/IL-1R (TIR)-containing molecule, named TIR domain-containing adaptor inducing IFN-[beta] (TRIF). Although initial study indicated that TRIF possesses the ability to activate not only the NF-[kappa]B- dependent but also the IFN-[beta] promoters, the molecular mechanisms of TRIF- induced signaling are poorly understood. In this study, we investigated the signaling cascades through TRIF. TNF receptor-associated factor (TRAF)6 interacted with TRIF through the TRAF domain of TRAF6 and TRAF6-binding motifs found in the N-terminal portion of TRIF. Disruption of TRAF6-binding motifs of TRIF disabled it from associating with TRAF6, and resulted in a reduction in the TRIF-induced activation of the NF-[kappa]B-dependent but not IFN-[beta] promoter. TANK-binding kinase (TBK)-1, which was recently reported to be a kinase of IFN regulatory factor-3, which is an essential transcription factor for IFN-[beta] expression, also associated with the N-terminal region of TRIF. Moreover, the association between TRIF and TBK1 appeared to require the kinase activity of TBK1, as well as phosphorylation of TRIF. Because TRAF6 and TBK1 bind close the region of TRIF, it seems that TRAF6 physically prevents the association between TRIF and TBK1. Taken together, these results demonstrate that TRIF associates with TRAF6 and TBK1 independently, and activates two distinct transcription factors, NF-[kappa]B and IFN regulatory factor-3, respectively. |
---|---|
ISSN: | 0022-1767 1550-6606 |