Loading…
Novel operability‐based approach for process design and intensification: Application to a membrane reactor for direct methane aromatization
This article introduces a novel operability‐based approach for process design and intensification of energy systems described by nonlinear models. This approach is applied to a membrane reactor (MR) for the direct methane aromatization (DMA) conversion to benzene and hydrogen. The proposed method br...
Saved in:
Published in: | AIChE journal 2017-03, Vol.63 (3), p.975-983 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article introduces a novel operability‐based approach for process design and intensification of energy systems described by nonlinear models. This approach is applied to a membrane reactor (MR) for the direct methane aromatization (DMA) conversion to benzene and hydrogen. The proposed method broadens the scope of the traditional path of the operability approaches for design and control, mainly oriented to obtain the achievable output set (AOS) from the available input set, and compare the computed AOS to a desired output set. In particular, an optimization algorithm based on nonlinear programming tools is formulated for the calculation of the desired input set that is feasible considering process constraints and intensification targets. Results on the application of the operability method as a tool for process intensification show reduction of the DMA‐MR footprint (≈77% reactor volume and 80% membrane area reduction) for an equivalent level of performance, when compared to the base case. This case study indicates that the novel approach can be a powerful tool for process intensification of membrane reactors and other complex chemical processes. © 2016 American Institute of Chemical Engineers AIChE J, 63: 975–983, 2017 |
---|---|
ISSN: | 0001-1541 1547-5905 |
DOI: | 10.1002/aic.15439 |