Loading…

Quantitative charge state analysis of manganese biominerals in aqueous suspension using scanning transmission X-ray microscopy (STXM)

We have applied Scanning Transmission Soft X-ray Microscopy (STXM) to investigate the charge state distribution of Mn in two kinds of Mn-biominerals, Mn nodules collected from Lake Michigan sediments and Mn precipitates formed by spores of a marine bacillus SG-1 under transport limited reaction cond...

Full description

Saved in:
Bibliographic Details
Published in:Geochimica et cosmochimica acta 2003-03, Vol.67 (6), p.1089-1098
Main Authors: Pecher, K., McCubbery, D., Kneedler, E., Rothe, J., Bargar, J., Meigs, G., Cox, L., Nealson, K., Tonner, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have applied Scanning Transmission Soft X-ray Microscopy (STXM) to investigate the charge state distribution of Mn in two kinds of Mn-biominerals, Mn nodules collected from Lake Michigan sediments and Mn precipitates formed by spores of a marine bacillus SG-1 under transport limited reaction conditions. A data analysis technique was developed, which allows for extraction of spatially resolved 2-d charge state maps of manganese on a submicron level. We find that the charge state of Mn dominates the spectral shape of L-edge spectra of environmentally important single oxidation state Mn minerals and that spectra of mixed oxidation state oxides can be modelled by a combination of appropriate single oxidation state reference spectra. Two-dimensional maps of charge state distributions clearly reveal domains of different oxidation states within single particles of Mn-micronodules. Spots of preferred accumulation of Mn(II) were found, which indicates biogenic precipitation of Mn(II)-species as a first step of nodule formation. The presence of Mn(III) in the studied sediment samples suggests the involvement of one-electron oxidation processes and reaction conditions which inhibit or slow down the disproportionation of Mn(III)-products. Under transport limited conditions, Mn oxidation products formed by spores of the marine bacillus SG-1 can vary from cell to cell. The presence of significant amounts of Mn(III) containing species points to the involvement of one-electron oxidation reactions as in the case of the micro-nodules. Our technique and the results obtained form a new basis for the mechanistic understanding of the formation of Mn biominerals in the environment.
ISSN:0016-7037
1872-9533
DOI:10.1016/S0016-7037(02)01229-2