Loading…

Poly‐cytosine DNA as a High‐Affinity Ligand for Inorganic Nanomaterials

Attaching DNA to nanomaterials is the basis for DNA‐directed assembly, sensing, and drug delivery using such hybrid materials. Poly‐cytosine (poly‐C) DNA is a high affinity ligand for four types of commonly used nanomaterials, including nanocarbons (graphene oxide and single‐walled carbon nanotubes)...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2017-05, Vol.56 (22), p.6208-6212
Main Authors: Lu, Chang, Huang, Zhicheng, Liu, Biwu, Liu, Yibo, Ying, Yibin, Liu, Juewen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4768-e48ed9c6c8c02ca77b3f4603415b7413f7115d5f700bde6006561b8ef62a2b383
cites cdi_FETCH-LOGICAL-c4768-e48ed9c6c8c02ca77b3f4603415b7413f7115d5f700bde6006561b8ef62a2b383
container_end_page 6212
container_issue 22
container_start_page 6208
container_title Angewandte Chemie International Edition
container_volume 56
creator Lu, Chang
Huang, Zhicheng
Liu, Biwu
Liu, Yibo
Ying, Yibin
Liu, Juewen
description Attaching DNA to nanomaterials is the basis for DNA‐directed assembly, sensing, and drug delivery using such hybrid materials. Poly‐cytosine (poly‐C) DNA is a high affinity ligand for four types of commonly used nanomaterials, including nanocarbons (graphene oxide and single‐walled carbon nanotubes), transition metal dichalcogenides (MoS2 and WS2), metal oxides (Fe3O4 and ZnO), and metal nanoparticles (Au and Ag). Compared to other homo‐DNA sequences, poly‐C DNA has the highest affinity for the first three types of materials. Using a diblock DNA containing a poly‐C block to attach to surfaces, the target DNA was successfully hybridized to the other block on graphene oxide more efficiently than that containing a typical poly‐A block, especially in the presence of non‐specific background DNA, proteins, or surfactants. This work provides a simple solution for functionalizing nanomaterials with non‐modified DNA and offers new insights into DNA biointerfaces. Straight‐C student: Poly‐cytosine (poly‐C) DNA adsorbs tighter than other DNA homopolymers (such as poly‐A) on nanocarbons, metal oxides, and transition‐metal dichalcogenides, allowing poly‐C to be used as a general anchor on these surfaces for their functionalization, especially in the presence of competing proteins, nucleic acids, and surfactants. F=fluorophore.
doi_str_mv 10.1002/anie.201702998
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1891133198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891133198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4768-e48ed9c6c8c02ca77b3f4603415b7413f7115d5f700bde6006561b8ef62a2b383</originalsourceid><addsrcrecordid>eNqF0LtOwzAUBmALgWi5rIwoEgtLim-JnbEqhVZUhQHmyHHs4iqJi90IZeMReEaeBFctRWJhOrb8-dfRD8AFggMEIb4RjVEDDBGDOMv4AeijBKOYMEYOw5kSEjOeoB448X4ZPOcwPQY9zCnOEkz64OHJVt3Xx6fs1tabRkW382EkfCSiiVm8hoeh1qYx6y6amYVoykhbF00b68LFyGguGluLtXJGVP4MHOkw1PlunoKXu_HzaBLPHu-no-EslpSlPFaUqzKTqeQSYikYK4imKSQUJQWjiGiGUFImmkFYlCqFME1SVHClUyxwQTg5Bdfb3JWzb63y67w2XqqqEo2yrc8RzxAiBGUbevWHLm3rmrDdRmWQMEqToAZbJZ313imdr5yphetyBPNNzfmm5nxfc_hwuYtti1qVe_7TawDZFrybSnX_xOXD-XT8G_4NuBSJKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899037445</pqid></control><display><type>article</type><title>Poly‐cytosine DNA as a High‐Affinity Ligand for Inorganic Nanomaterials</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Lu, Chang ; Huang, Zhicheng ; Liu, Biwu ; Liu, Yibo ; Ying, Yibin ; Liu, Juewen</creator><creatorcontrib>Lu, Chang ; Huang, Zhicheng ; Liu, Biwu ; Liu, Yibo ; Ying, Yibin ; Liu, Juewen</creatorcontrib><description>Attaching DNA to nanomaterials is the basis for DNA‐directed assembly, sensing, and drug delivery using such hybrid materials. Poly‐cytosine (poly‐C) DNA is a high affinity ligand for four types of commonly used nanomaterials, including nanocarbons (graphene oxide and single‐walled carbon nanotubes), transition metal dichalcogenides (MoS2 and WS2), metal oxides (Fe3O4 and ZnO), and metal nanoparticles (Au and Ag). Compared to other homo‐DNA sequences, poly‐C DNA has the highest affinity for the first three types of materials. Using a diblock DNA containing a poly‐C block to attach to surfaces, the target DNA was successfully hybridized to the other block on graphene oxide more efficiently than that containing a typical poly‐A block, especially in the presence of non‐specific background DNA, proteins, or surfactants. This work provides a simple solution for functionalizing nanomaterials with non‐modified DNA and offers new insights into DNA biointerfaces. Straight‐C student: Poly‐cytosine (poly‐C) DNA adsorbs tighter than other DNA homopolymers (such as poly‐A) on nanocarbons, metal oxides, and transition‐metal dichalcogenides, allowing poly‐C to be used as a general anchor on these surfaces for their functionalization, especially in the presence of competing proteins, nucleic acids, and surfactants. F=fluorophore.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201702998</identifier><identifier>PMID: 28429523</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Affinity ; aptamers ; biosensors ; Cytosine ; Deoxyribonucleic acid ; DNA ; Drug delivery ; Drug delivery systems ; Hybridization ; Iron oxides ; Ligands ; Metals ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Nanotubes ; Nucleotide sequence ; Oxides ; Pollutants ; poly-cytocene ; Proteins ; Single wall carbon nanotubes ; Surfactants</subject><ispartof>Angewandte Chemie International Edition, 2017-05, Vol.56 (22), p.6208-6212</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4768-e48ed9c6c8c02ca77b3f4603415b7413f7115d5f700bde6006561b8ef62a2b383</citedby><cites>FETCH-LOGICAL-c4768-e48ed9c6c8c02ca77b3f4603415b7413f7115d5f700bde6006561b8ef62a2b383</cites><orcidid>0000-0001-5918-9336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28429523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Chang</creatorcontrib><creatorcontrib>Huang, Zhicheng</creatorcontrib><creatorcontrib>Liu, Biwu</creatorcontrib><creatorcontrib>Liu, Yibo</creatorcontrib><creatorcontrib>Ying, Yibin</creatorcontrib><creatorcontrib>Liu, Juewen</creatorcontrib><title>Poly‐cytosine DNA as a High‐Affinity Ligand for Inorganic Nanomaterials</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Attaching DNA to nanomaterials is the basis for DNA‐directed assembly, sensing, and drug delivery using such hybrid materials. Poly‐cytosine (poly‐C) DNA is a high affinity ligand for four types of commonly used nanomaterials, including nanocarbons (graphene oxide and single‐walled carbon nanotubes), transition metal dichalcogenides (MoS2 and WS2), metal oxides (Fe3O4 and ZnO), and metal nanoparticles (Au and Ag). Compared to other homo‐DNA sequences, poly‐C DNA has the highest affinity for the first three types of materials. Using a diblock DNA containing a poly‐C block to attach to surfaces, the target DNA was successfully hybridized to the other block on graphene oxide more efficiently than that containing a typical poly‐A block, especially in the presence of non‐specific background DNA, proteins, or surfactants. This work provides a simple solution for functionalizing nanomaterials with non‐modified DNA and offers new insights into DNA biointerfaces. Straight‐C student: Poly‐cytosine (poly‐C) DNA adsorbs tighter than other DNA homopolymers (such as poly‐A) on nanocarbons, metal oxides, and transition‐metal dichalcogenides, allowing poly‐C to be used as a general anchor on these surfaces for their functionalization, especially in the presence of competing proteins, nucleic acids, and surfactants. F=fluorophore.</description><subject>Affinity</subject><subject>aptamers</subject><subject>biosensors</subject><subject>Cytosine</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Hybridization</subject><subject>Iron oxides</subject><subject>Ligands</subject><subject>Metals</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nucleotide sequence</subject><subject>Oxides</subject><subject>Pollutants</subject><subject>poly-cytocene</subject><subject>Proteins</subject><subject>Single wall carbon nanotubes</subject><subject>Surfactants</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0LtOwzAUBmALgWi5rIwoEgtLim-JnbEqhVZUhQHmyHHs4iqJi90IZeMReEaeBFctRWJhOrb8-dfRD8AFggMEIb4RjVEDDBGDOMv4AeijBKOYMEYOw5kSEjOeoB448X4ZPOcwPQY9zCnOEkz64OHJVt3Xx6fs1tabRkW382EkfCSiiVm8hoeh1qYx6y6amYVoykhbF00b68LFyGguGluLtXJGVP4MHOkw1PlunoKXu_HzaBLPHu-no-EslpSlPFaUqzKTqeQSYikYK4imKSQUJQWjiGiGUFImmkFYlCqFME1SVHClUyxwQTg5Bdfb3JWzb63y67w2XqqqEo2yrc8RzxAiBGUbevWHLm3rmrDdRmWQMEqToAZbJZ313imdr5yphetyBPNNzfmm5nxfc_hwuYtti1qVe_7TawDZFrybSnX_xOXD-XT8G_4NuBSJKQ</recordid><startdate>20170522</startdate><enddate>20170522</enddate><creator>Lu, Chang</creator><creator>Huang, Zhicheng</creator><creator>Liu, Biwu</creator><creator>Liu, Yibo</creator><creator>Ying, Yibin</creator><creator>Liu, Juewen</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5918-9336</orcidid></search><sort><creationdate>20170522</creationdate><title>Poly‐cytosine DNA as a High‐Affinity Ligand for Inorganic Nanomaterials</title><author>Lu, Chang ; Huang, Zhicheng ; Liu, Biwu ; Liu, Yibo ; Ying, Yibin ; Liu, Juewen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4768-e48ed9c6c8c02ca77b3f4603415b7413f7115d5f700bde6006561b8ef62a2b383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Affinity</topic><topic>aptamers</topic><topic>biosensors</topic><topic>Cytosine</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Hybridization</topic><topic>Iron oxides</topic><topic>Ligands</topic><topic>Metals</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nucleotide sequence</topic><topic>Oxides</topic><topic>Pollutants</topic><topic>poly-cytocene</topic><topic>Proteins</topic><topic>Single wall carbon nanotubes</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Chang</creatorcontrib><creatorcontrib>Huang, Zhicheng</creatorcontrib><creatorcontrib>Liu, Biwu</creatorcontrib><creatorcontrib>Liu, Yibo</creatorcontrib><creatorcontrib>Ying, Yibin</creatorcontrib><creatorcontrib>Liu, Juewen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Chang</au><au>Huang, Zhicheng</au><au>Liu, Biwu</au><au>Liu, Yibo</au><au>Ying, Yibin</au><au>Liu, Juewen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly‐cytosine DNA as a High‐Affinity Ligand for Inorganic Nanomaterials</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2017-05-22</date><risdate>2017</risdate><volume>56</volume><issue>22</issue><spage>6208</spage><epage>6212</epage><pages>6208-6212</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Attaching DNA to nanomaterials is the basis for DNA‐directed assembly, sensing, and drug delivery using such hybrid materials. Poly‐cytosine (poly‐C) DNA is a high affinity ligand for four types of commonly used nanomaterials, including nanocarbons (graphene oxide and single‐walled carbon nanotubes), transition metal dichalcogenides (MoS2 and WS2), metal oxides (Fe3O4 and ZnO), and metal nanoparticles (Au and Ag). Compared to other homo‐DNA sequences, poly‐C DNA has the highest affinity for the first three types of materials. Using a diblock DNA containing a poly‐C block to attach to surfaces, the target DNA was successfully hybridized to the other block on graphene oxide more efficiently than that containing a typical poly‐A block, especially in the presence of non‐specific background DNA, proteins, or surfactants. This work provides a simple solution for functionalizing nanomaterials with non‐modified DNA and offers new insights into DNA biointerfaces. Straight‐C student: Poly‐cytosine (poly‐C) DNA adsorbs tighter than other DNA homopolymers (such as poly‐A) on nanocarbons, metal oxides, and transition‐metal dichalcogenides, allowing poly‐C to be used as a general anchor on these surfaces for their functionalization, especially in the presence of competing proteins, nucleic acids, and surfactants. F=fluorophore.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28429523</pmid><doi>10.1002/anie.201702998</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-5918-9336</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2017-05, Vol.56 (22), p.6208-6212
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_1891133198
source Wiley-Blackwell Read & Publish Collection
subjects Affinity
aptamers
biosensors
Cytosine
Deoxyribonucleic acid
DNA
Drug delivery
Drug delivery systems
Hybridization
Iron oxides
Ligands
Metals
Nanomaterials
Nanoparticles
Nanotechnology
Nanotubes
Nucleotide sequence
Oxides
Pollutants
poly-cytocene
Proteins
Single wall carbon nanotubes
Surfactants
title Poly‐cytosine DNA as a High‐Affinity Ligand for Inorganic Nanomaterials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A53%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly%E2%80%90cytosine%20DNA%20as%20a%20High%E2%80%90Affinity%20Ligand%20for%20Inorganic%20Nanomaterials&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Lu,%20Chang&rft.date=2017-05-22&rft.volume=56&rft.issue=22&rft.spage=6208&rft.epage=6212&rft.pages=6208-6212&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201702998&rft_dat=%3Cproquest_cross%3E1891133198%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4768-e48ed9c6c8c02ca77b3f4603415b7413f7115d5f700bde6006561b8ef62a2b383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899037445&rft_id=info:pmid/28429523&rfr_iscdi=true