Loading…
Poly‐cytosine DNA as a High‐Affinity Ligand for Inorganic Nanomaterials
Attaching DNA to nanomaterials is the basis for DNA‐directed assembly, sensing, and drug delivery using such hybrid materials. Poly‐cytosine (poly‐C) DNA is a high affinity ligand for four types of commonly used nanomaterials, including nanocarbons (graphene oxide and single‐walled carbon nanotubes)...
Saved in:
Published in: | Angewandte Chemie International Edition 2017-05, Vol.56 (22), p.6208-6212 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4768-e48ed9c6c8c02ca77b3f4603415b7413f7115d5f700bde6006561b8ef62a2b383 |
---|---|
cites | cdi_FETCH-LOGICAL-c4768-e48ed9c6c8c02ca77b3f4603415b7413f7115d5f700bde6006561b8ef62a2b383 |
container_end_page | 6212 |
container_issue | 22 |
container_start_page | 6208 |
container_title | Angewandte Chemie International Edition |
container_volume | 56 |
creator | Lu, Chang Huang, Zhicheng Liu, Biwu Liu, Yibo Ying, Yibin Liu, Juewen |
description | Attaching DNA to nanomaterials is the basis for DNA‐directed assembly, sensing, and drug delivery using such hybrid materials. Poly‐cytosine (poly‐C) DNA is a high affinity ligand for four types of commonly used nanomaterials, including nanocarbons (graphene oxide and single‐walled carbon nanotubes), transition metal dichalcogenides (MoS2 and WS2), metal oxides (Fe3O4 and ZnO), and metal nanoparticles (Au and Ag). Compared to other homo‐DNA sequences, poly‐C DNA has the highest affinity for the first three types of materials. Using a diblock DNA containing a poly‐C block to attach to surfaces, the target DNA was successfully hybridized to the other block on graphene oxide more efficiently than that containing a typical poly‐A block, especially in the presence of non‐specific background DNA, proteins, or surfactants. This work provides a simple solution for functionalizing nanomaterials with non‐modified DNA and offers new insights into DNA biointerfaces.
Straight‐C student: Poly‐cytosine (poly‐C) DNA adsorbs tighter than other DNA homopolymers (such as poly‐A) on nanocarbons, metal oxides, and transition‐metal dichalcogenides, allowing poly‐C to be used as a general anchor on these surfaces for their functionalization, especially in the presence of competing proteins, nucleic acids, and surfactants. F=fluorophore. |
doi_str_mv | 10.1002/anie.201702998 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1891133198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891133198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4768-e48ed9c6c8c02ca77b3f4603415b7413f7115d5f700bde6006561b8ef62a2b383</originalsourceid><addsrcrecordid>eNqF0LtOwzAUBmALgWi5rIwoEgtLim-JnbEqhVZUhQHmyHHs4iqJi90IZeMReEaeBFctRWJhOrb8-dfRD8AFggMEIb4RjVEDDBGDOMv4AeijBKOYMEYOw5kSEjOeoB448X4ZPOcwPQY9zCnOEkz64OHJVt3Xx6fs1tabRkW382EkfCSiiVm8hoeh1qYx6y6amYVoykhbF00b68LFyGguGluLtXJGVP4MHOkw1PlunoKXu_HzaBLPHu-no-EslpSlPFaUqzKTqeQSYikYK4imKSQUJQWjiGiGUFImmkFYlCqFME1SVHClUyxwQTg5Bdfb3JWzb63y67w2XqqqEo2yrc8RzxAiBGUbevWHLm3rmrDdRmWQMEqToAZbJZ313imdr5yphetyBPNNzfmm5nxfc_hwuYtti1qVe_7TawDZFrybSnX_xOXD-XT8G_4NuBSJKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899037445</pqid></control><display><type>article</type><title>Poly‐cytosine DNA as a High‐Affinity Ligand for Inorganic Nanomaterials</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Lu, Chang ; Huang, Zhicheng ; Liu, Biwu ; Liu, Yibo ; Ying, Yibin ; Liu, Juewen</creator><creatorcontrib>Lu, Chang ; Huang, Zhicheng ; Liu, Biwu ; Liu, Yibo ; Ying, Yibin ; Liu, Juewen</creatorcontrib><description>Attaching DNA to nanomaterials is the basis for DNA‐directed assembly, sensing, and drug delivery using such hybrid materials. Poly‐cytosine (poly‐C) DNA is a high affinity ligand for four types of commonly used nanomaterials, including nanocarbons (graphene oxide and single‐walled carbon nanotubes), transition metal dichalcogenides (MoS2 and WS2), metal oxides (Fe3O4 and ZnO), and metal nanoparticles (Au and Ag). Compared to other homo‐DNA sequences, poly‐C DNA has the highest affinity for the first three types of materials. Using a diblock DNA containing a poly‐C block to attach to surfaces, the target DNA was successfully hybridized to the other block on graphene oxide more efficiently than that containing a typical poly‐A block, especially in the presence of non‐specific background DNA, proteins, or surfactants. This work provides a simple solution for functionalizing nanomaterials with non‐modified DNA and offers new insights into DNA biointerfaces.
Straight‐C student: Poly‐cytosine (poly‐C) DNA adsorbs tighter than other DNA homopolymers (such as poly‐A) on nanocarbons, metal oxides, and transition‐metal dichalcogenides, allowing poly‐C to be used as a general anchor on these surfaces for their functionalization, especially in the presence of competing proteins, nucleic acids, and surfactants. F=fluorophore.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201702998</identifier><identifier>PMID: 28429523</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Affinity ; aptamers ; biosensors ; Cytosine ; Deoxyribonucleic acid ; DNA ; Drug delivery ; Drug delivery systems ; Hybridization ; Iron oxides ; Ligands ; Metals ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Nanotubes ; Nucleotide sequence ; Oxides ; Pollutants ; poly-cytocene ; Proteins ; Single wall carbon nanotubes ; Surfactants</subject><ispartof>Angewandte Chemie International Edition, 2017-05, Vol.56 (22), p.6208-6212</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4768-e48ed9c6c8c02ca77b3f4603415b7413f7115d5f700bde6006561b8ef62a2b383</citedby><cites>FETCH-LOGICAL-c4768-e48ed9c6c8c02ca77b3f4603415b7413f7115d5f700bde6006561b8ef62a2b383</cites><orcidid>0000-0001-5918-9336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28429523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Chang</creatorcontrib><creatorcontrib>Huang, Zhicheng</creatorcontrib><creatorcontrib>Liu, Biwu</creatorcontrib><creatorcontrib>Liu, Yibo</creatorcontrib><creatorcontrib>Ying, Yibin</creatorcontrib><creatorcontrib>Liu, Juewen</creatorcontrib><title>Poly‐cytosine DNA as a High‐Affinity Ligand for Inorganic Nanomaterials</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Attaching DNA to nanomaterials is the basis for DNA‐directed assembly, sensing, and drug delivery using such hybrid materials. Poly‐cytosine (poly‐C) DNA is a high affinity ligand for four types of commonly used nanomaterials, including nanocarbons (graphene oxide and single‐walled carbon nanotubes), transition metal dichalcogenides (MoS2 and WS2), metal oxides (Fe3O4 and ZnO), and metal nanoparticles (Au and Ag). Compared to other homo‐DNA sequences, poly‐C DNA has the highest affinity for the first three types of materials. Using a diblock DNA containing a poly‐C block to attach to surfaces, the target DNA was successfully hybridized to the other block on graphene oxide more efficiently than that containing a typical poly‐A block, especially in the presence of non‐specific background DNA, proteins, or surfactants. This work provides a simple solution for functionalizing nanomaterials with non‐modified DNA and offers new insights into DNA biointerfaces.
Straight‐C student: Poly‐cytosine (poly‐C) DNA adsorbs tighter than other DNA homopolymers (such as poly‐A) on nanocarbons, metal oxides, and transition‐metal dichalcogenides, allowing poly‐C to be used as a general anchor on these surfaces for their functionalization, especially in the presence of competing proteins, nucleic acids, and surfactants. F=fluorophore.</description><subject>Affinity</subject><subject>aptamers</subject><subject>biosensors</subject><subject>Cytosine</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Hybridization</subject><subject>Iron oxides</subject><subject>Ligands</subject><subject>Metals</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nucleotide sequence</subject><subject>Oxides</subject><subject>Pollutants</subject><subject>poly-cytocene</subject><subject>Proteins</subject><subject>Single wall carbon nanotubes</subject><subject>Surfactants</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0LtOwzAUBmALgWi5rIwoEgtLim-JnbEqhVZUhQHmyHHs4iqJi90IZeMReEaeBFctRWJhOrb8-dfRD8AFggMEIb4RjVEDDBGDOMv4AeijBKOYMEYOw5kSEjOeoB448X4ZPOcwPQY9zCnOEkz64OHJVt3Xx6fs1tabRkW382EkfCSiiVm8hoeh1qYx6y6amYVoykhbF00b68LFyGguGluLtXJGVP4MHOkw1PlunoKXu_HzaBLPHu-no-EslpSlPFaUqzKTqeQSYikYK4imKSQUJQWjiGiGUFImmkFYlCqFME1SVHClUyxwQTg5Bdfb3JWzb63y67w2XqqqEo2yrc8RzxAiBGUbevWHLm3rmrDdRmWQMEqToAZbJZ313imdr5yphetyBPNNzfmm5nxfc_hwuYtti1qVe_7TawDZFrybSnX_xOXD-XT8G_4NuBSJKQ</recordid><startdate>20170522</startdate><enddate>20170522</enddate><creator>Lu, Chang</creator><creator>Huang, Zhicheng</creator><creator>Liu, Biwu</creator><creator>Liu, Yibo</creator><creator>Ying, Yibin</creator><creator>Liu, Juewen</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5918-9336</orcidid></search><sort><creationdate>20170522</creationdate><title>Poly‐cytosine DNA as a High‐Affinity Ligand for Inorganic Nanomaterials</title><author>Lu, Chang ; Huang, Zhicheng ; Liu, Biwu ; Liu, Yibo ; Ying, Yibin ; Liu, Juewen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4768-e48ed9c6c8c02ca77b3f4603415b7413f7115d5f700bde6006561b8ef62a2b383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Affinity</topic><topic>aptamers</topic><topic>biosensors</topic><topic>Cytosine</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Hybridization</topic><topic>Iron oxides</topic><topic>Ligands</topic><topic>Metals</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nucleotide sequence</topic><topic>Oxides</topic><topic>Pollutants</topic><topic>poly-cytocene</topic><topic>Proteins</topic><topic>Single wall carbon nanotubes</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Chang</creatorcontrib><creatorcontrib>Huang, Zhicheng</creatorcontrib><creatorcontrib>Liu, Biwu</creatorcontrib><creatorcontrib>Liu, Yibo</creatorcontrib><creatorcontrib>Ying, Yibin</creatorcontrib><creatorcontrib>Liu, Juewen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Chang</au><au>Huang, Zhicheng</au><au>Liu, Biwu</au><au>Liu, Yibo</au><au>Ying, Yibin</au><au>Liu, Juewen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly‐cytosine DNA as a High‐Affinity Ligand for Inorganic Nanomaterials</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2017-05-22</date><risdate>2017</risdate><volume>56</volume><issue>22</issue><spage>6208</spage><epage>6212</epage><pages>6208-6212</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Attaching DNA to nanomaterials is the basis for DNA‐directed assembly, sensing, and drug delivery using such hybrid materials. Poly‐cytosine (poly‐C) DNA is a high affinity ligand for four types of commonly used nanomaterials, including nanocarbons (graphene oxide and single‐walled carbon nanotubes), transition metal dichalcogenides (MoS2 and WS2), metal oxides (Fe3O4 and ZnO), and metal nanoparticles (Au and Ag). Compared to other homo‐DNA sequences, poly‐C DNA has the highest affinity for the first three types of materials. Using a diblock DNA containing a poly‐C block to attach to surfaces, the target DNA was successfully hybridized to the other block on graphene oxide more efficiently than that containing a typical poly‐A block, especially in the presence of non‐specific background DNA, proteins, or surfactants. This work provides a simple solution for functionalizing nanomaterials with non‐modified DNA and offers new insights into DNA biointerfaces.
Straight‐C student: Poly‐cytosine (poly‐C) DNA adsorbs tighter than other DNA homopolymers (such as poly‐A) on nanocarbons, metal oxides, and transition‐metal dichalcogenides, allowing poly‐C to be used as a general anchor on these surfaces for their functionalization, especially in the presence of competing proteins, nucleic acids, and surfactants. F=fluorophore.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28429523</pmid><doi>10.1002/anie.201702998</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-5918-9336</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2017-05, Vol.56 (22), p.6208-6212 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_1891133198 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Affinity aptamers biosensors Cytosine Deoxyribonucleic acid DNA Drug delivery Drug delivery systems Hybridization Iron oxides Ligands Metals Nanomaterials Nanoparticles Nanotechnology Nanotubes Nucleotide sequence Oxides Pollutants poly-cytocene Proteins Single wall carbon nanotubes Surfactants |
title | Poly‐cytosine DNA as a High‐Affinity Ligand for Inorganic Nanomaterials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A53%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly%E2%80%90cytosine%20DNA%20as%20a%20High%E2%80%90Affinity%20Ligand%20for%20Inorganic%20Nanomaterials&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Lu,%20Chang&rft.date=2017-05-22&rft.volume=56&rft.issue=22&rft.spage=6208&rft.epage=6212&rft.pages=6208-6212&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201702998&rft_dat=%3Cproquest_cross%3E1891133198%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4768-e48ed9c6c8c02ca77b3f4603415b7413f7115d5f700bde6006561b8ef62a2b383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899037445&rft_id=info:pmid/28429523&rfr_iscdi=true |