Loading…

Synthesis and antiproteasomal activity of novel O-benzyl salicylamide-based inhibitors built from leucine and phenylalanine

Inhibition of protein degradation is one of strategies for suppression of uncontrolled proliferation of cancer cells. Proteolytic degradation in cells is mainly ensured by proteasome and its inhibition by bortezomib showed benefit in clinical use for the treatment of multiple myeloma. We report here...

Full description

Saved in:
Bibliographic Details
Published in:European journal of medicinal chemistry 2017-07, Vol.135, p.142-158
Main Authors: Jorda, Radek, Dušek, Jan, Řezníčková, Eva, Pauk, Karel, Magar, Pratibha P., Imramovský, Aleš, Kryštof, Vladimír
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inhibition of protein degradation is one of strategies for suppression of uncontrolled proliferation of cancer cells. Proteolytic degradation in cells is mainly ensured by proteasome and its inhibition by bortezomib showed benefit in clinical use for the treatment of multiple myeloma. We report here the library of antiproteasomal O-benzyl salicylamides built from leucine and phenylalanine. Prepared compounds displayed antiproliferative activity on K562, CEM and U266 cancer cell lines, ranging from high micromolar to submicromolar GI50 values. The most potent compounds (series 4 and 6) were further assayed for their inhibition of chymotrypsin-like protease activity of the 26S proteasome in U266 cells. The majority of compounds inhibited the proteasome in mid-nanomolar concentrations (IC50 ranging from 57 to 197 nM) and it correlated with cellular potency. In a cell based assay involving green fluorescence protein (GFP) fused to a short degron that is rapidly degraded by a proteasome the compounds induced accumulation of GFP, visualised and quantified by live-cell imaging. Levels of polyubiquitinated proteins in U266 cells treated by compound 4m were also analyzed by immunoblotting, revealing a typical high molecular mass smear of ubiquitin conjugates. Finally, apoptotic cell death in treated U266 cells was detected biochemically by measuring the activity of caspases 3 and 7 in lysates and by immunoblotting of caspase 7, its substrate poly(ADP-ribose)polymerase, and Mcl-1, which all together showed changes typical for apoptosis. All these observations were in agreement with expected cellular mechanism of action and confirmed proteasome targeting by prepared O-benzyl salicylamides. [Display omitted] •A new class of salicylic-dipeptide proteasome inhibitors was developed.•Mechanism of action in cells corresponds to proteasome inhibition.•Compounds display nanomolar antiproliferative activities in cancer cell lines.
ISSN:0223-5234
1768-3254
DOI:10.1016/j.ejmech.2017.04.027