Loading…

Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures

The rational design of high‐performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and human–machine interfacing. For practical applications, pressure sensors with high sensitivity and low detection limit are desired. Here, ta simple pr...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2017-03, Vol.27 (9), p.np-n/a
Main Authors: Jian, Muqiang, Xia, Kailun, Wang, Qi, Yin, Zhe, Wang, Huimin, Wang, Chunya, Xie, Huanhuan, Zhang, Mingchao, Zhang, Yingying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rational design of high‐performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and human–machine interfacing. For practical applications, pressure sensors with high sensitivity and low detection limit are desired. Here, ta simple process to fabricate high‐performance pressure sensors based on biomimetic hierarchical structures and highly conductive active membranes is presented. Aligned carbon nanotubes/graphene (ACNT/G) is used as the active material and microstructured polydimethylsiloxane (m‐PDMS) molded from natural leaves is used as the flexible matrix. The highly conductive ACNT/G films with unique coalescent structures, which are directly grown using chemical vapor deposition, can be conformably coated on the m‐PDMS films with hierarchical protuberances. Flexible ACNT/G pressure sensors are then constructed by putting two ACNT/G/PDMS films face to face with the orientation of the ACNTs in the two films perpendicular to each other. Due to the unique hierarchical structures of both the ACNT/G and m‐PDMS films, the obtained pressure sensors demonstrate high sensitivity (19.8 kPa−1,
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201606066