Loading…
Backward bifurcation for some general recovery functions
We consider an epidemic model for the dynamics of an infectious disease that incorporates a nonlinear function h(I), which describes the recovery rate of infectious individuals. We show that in spite of the simple structure of the model, a backward bifurcation may occur if the recovery rate h(I) dec...
Saved in:
Published in: | Mathematical methods in the applied sciences 2017-03, Vol.40 (5), p.1505-1515 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider an epidemic model for the dynamics of an infectious disease that incorporates a nonlinear function h(I), which describes the recovery rate of infectious individuals. We show that in spite of the simple structure of the model, a backward bifurcation may occur if the recovery rate h(I) decreases and the velocity of the recovery rate
dh(0)dI is below a threshold value in the beginning of the epidemic. These functions would represent a weak reaction or slow treatment measures because, for instance, of limited allocation of resources o sparsely distributed populations. This includes commonly used functionals, as the monotone saturating Michaelis–Menten, and non monotone recovery rates, used to represent a recovery rate limited by the increasing number of infected individuals. We are especially interested in control policies that can lead to recovery functions that avoid backward bifurcation. Copyright © 2016 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.4074 |