Loading…
Precise background subtraction in stimulated emission double depletion nanoscopy
Low-resolution background in stimulated emission depletion (STED) nanoscopy can arise from incomplete depletion or re-excitation by the STED beam. We have recently introduced stimulated emission double depletion (STEDD), a technique to efficiently suppress this background. In STEDD, the conventional...
Saved in:
Published in: | Optics letters 2017-02, Vol.42 (4), p.831-834 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Low-resolution background in stimulated emission depletion (STED) nanoscopy can arise from incomplete depletion or re-excitation by the STED beam. We have recently introduced stimulated emission double depletion (STEDD), a technique to efficiently suppress this background. In STEDD, the conventional, doughnut-shaped STED pulse, which depletes excited fluorophores outside the center of the focal region, is followed by a second Gaussian STED pulse, which specifically depletes the central region. The background is removed by calculating a weighted difference of photon events collected before and after the second STED pulse. Here, we present a simple, yet powerful, method to determine the weight factor, which depends on the fluorescence decay, from a direct analysis of the acquired data. We vary the weight factor to identify its optimal value as the one for which the weight of high-frequency components in the spectrum of the acquired STEDD image is maximized. This strategy is also applicable to other differential approaches for background suppression in imaging. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/ol.42.000831 |