Loading…
Prospects for a dominantly microwave-diagnosed magnetically confined fusion reactor
Compared to present experiments, tokamak and stellarator reactors will be subject to higher heat loads, sputtering, erosion and subsequent coating, tritium retention, higher neutron fluxes, and a number of radiation effects. Additionally, neutral beam penetration in tokamak reactors will only be lim...
Saved in:
Published in: | Journal of instrumentation 2017-01, Vol.12 (1), p.C01094-C01094 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Compared to present experiments, tokamak and stellarator reactors will be subject to higher heat loads, sputtering, erosion and subsequent coating, tritium retention, higher neutron fluxes, and a number of radiation effects. Additionally, neutral beam penetration in tokamak reactors will only be limited to the plasma edge. As a result, several optical, beam-based and magnetic diagnostics of today's plasmas might not be applicable to tomorrow's reactors, but the present discussion suggests that reactors could largely rely on microwave diagnostics, including techniques based on mode conversions and Collective Thomson Scattering. |
---|---|
ISSN: | 1748-0221 1748-0221 |
DOI: | 10.1088/1748-0221/12/01/C01094 |