Loading…
Tumor associated macrophage-targeted microRNA delivery with dual-responsive polypeptide nanovectors for anti-cancer therapy
Abstract Repolarizing Tumor-associated macrophages (TAMs) to anti-tumor M1 macrophages with microRNA (miR) is a plausible approach for cancer treatment. However, how to achieve TAM-targeted miR delivery remains a challenge. The present study generated redox/pH dual-responsive hybrid polypeptide nano...
Saved in:
Published in: | Biomaterials 2017-07, Vol.134, p.166-179 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Repolarizing Tumor-associated macrophages (TAMs) to anti-tumor M1 macrophages with microRNA (miR) is a plausible approach for cancer treatment. However, how to achieve TAM-targeted miR delivery remains a challenge. The present study generated redox/pH dual-responsive hybrid polypeptide nanovectors, which consisted of self-crosslinked redox-responsive nanoparticles based on galactose-functionalized n-butylamine-poly(L-lysine)- b-poly(L-cysteine) polypeptides (GLC) coated with DCA-grafted sheddable PEG-PLL (sPEG) copolymers. The ex vivo study showed that sPEG shielded cationic GLC core at physiological pH but quickly shed off to re-expose GLC due to it charge reversible property. Encapsulation with sPEG/GLC nanovectors effectively facilitated macrophage-targeted miR delivery at the acidic condition but diminished miR uptake at neutral pH. Administration of miR155-loaded sPEG/GLC (sPEG/GLC/155) nanocomplexes increased miR155 expression in TAMs about 100–400 folds both in vitro and in vivo . sPEG/GLC/155 also effectively repolarized immunosuppressive TAMs to anti-tumor M1 macrophages through elevating M1 macrophage markers (IL-12, iNOS, MHC II) and suppressing M2 macrophage markers (Msr2 and Arg1) in TAMs. Moreover, the treatment of sPEG/GLC/155 significantly increased activated T lymphocytes and NK cells in tumors, which consequently led to robust tumor regression. Hence, TAM-targeted delivery of miR with redox/pH dual-responsive sPEG/GLC nanovectors could be a promising approach to re-polarize TAMs to M1 macrophages in situ and induce tumor regression. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2017.04.043 |