Loading…

De-bugging and maximizing plant cytochrome P450 production in Escherichia coli with C-terminal GFP fusions

Cytochromes P450 (CYP) are attractive enzyme targets in biotechnology as they catalyze stereospecific C-hydroxylations of complex core skeletons at positions that typically are difficult to access by chemical synthesis. Membrane bound CYPs are involved in nearly all plant pathways leading to the for...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2017-05, Vol.101 (10), p.4103-4113
Main Authors: Christensen, Ulla, Vazquez-Albacete, Dario, Søgaard, Karina M., Hobel, Tonja, Nielsen, Morten T., Harrison, Scott James, Hansen, Anders Holmgaard, Møller, Birger Lindberg, Seppälä, Susanna, Nørholm, Morten H. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cytochromes P450 (CYP) are attractive enzyme targets in biotechnology as they catalyze stereospecific C-hydroxylations of complex core skeletons at positions that typically are difficult to access by chemical synthesis. Membrane bound CYPs are involved in nearly all plant pathways leading to the formation of high-value compounds. In the present study, we systematically maximize the heterologous expression of six different plant-derived CYP genes in Escherichia coli , using a workflow based on C-terminal fusions to the green fluorescent protein. The six genes can be over-expressed in both K- and B-type E . coli strains using standard growth media. Furthermore, sequences encoding a small synthetic peptide and a small bacterial membrane anchor markedly enhance the expression of all six genes. For one of the CYPs, the length of the linker region between the predicted N-terminal transmembrane segment and the soluble domain is modified, in order to verify the importance of this region for enzymatic activity. The work describes how membrane bound CYPs are optimally produced in E . coli and thus adds this plant multi-membered key enzyme family to the toolbox for bacterial cell factory design.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-016-8076-5