Loading…
Balance Layout Problem for 3D-Objects: Mathematical Model and Solution Methods
The paper introduces a general mathematical model of the optimal layout of 3D-objects (full-spheres, right circular cylinders, right regular prisms, and right rectangular parallelepipeds) in a container (straight circular cylinder, paraboloid of revolution, truncated circular cone) with circular rac...
Saved in:
Published in: | Cybernetics and systems analysis 2015-07, Vol.51 (4), p.556-565 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper introduces a general mathematical model of the optimal layout of 3D-objects (full-spheres, right circular cylinders, right regular prisms, and right rectangular parallelepipeds) in a container (straight circular cylinder, paraboloid of revolution, truncated circular cone) with circular racks. The model takes into account the minimum and maximum admissible distances between objects as well as the behavior constraints of the mechanical system (equilibrium, moments of inertia, and stability constraints). We propose solution methods based on Shor’s r-algorithm, multistart algorithm, and accelerated search of terminal vertices of the decision tree. |
---|---|
ISSN: | 1060-0396 1573-8337 |
DOI: | 10.1007/s10559-015-9746-5 |