Loading…
A boundary integral equation method for the transmission eigenvalue problem
We propose a new integral equation formulation to characterize and compute transmission eigenvalues for constant refractive index that play an important role in inverse scattering problems for penetrable media. As opposed to the recently developed approach by Cossonnière and Haddar [1,2] which relie...
Saved in:
Published in: | Applicable analysis 2017-01, Vol.96 (1), p.23-38 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a new integral equation formulation to characterize and compute transmission eigenvalues for constant refractive index that play an important role in inverse scattering problems for penetrable media. As opposed to the recently developed approach by Cossonnière and Haddar [1,2] which relies on a two by two system of boundary integral equations our analysis is based on only one integral equation in terms of Dirichlet-to-Neumann or Robin-to-Dirichlet operators which results in a noticeable reduction of computational costs. We establish Fredholm properties of the integral operators and their analytic dependence on the wave number. Further we employ the numerical algorithm for analytic non-linear eigenvalue problems that was recently proposed by Beyn [3] for the numerical computation of transmission eigenvalues via this new integral equation. |
---|---|
ISSN: | 0003-6811 1563-504X |
DOI: | 10.1080/00036811.2016.1189537 |