Loading…
Interval-wise testing for functional data
In the framework of null hypothesis significance testing for functional data, we propose a procedure able to select intervals of the domain imputable for the rejection of a null hypothesis. An unadjusted p-value function and an adjusted one are the output of the procedure, namely interval-wise testi...
Saved in:
Published in: | Journal of nonparametric statistics 2017-04, Vol.29 (2), p.407-424 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the framework of null hypothesis significance testing for functional data, we propose a procedure able to select intervals of the domain imputable for the rejection of a null hypothesis. An unadjusted p-value function and an adjusted one are the output of the procedure, namely interval-wise testing. Depending on the sort and level α of type-I error control, significant intervals can be selected by thresholding the two p-value functions at level α. We prove that the unadjusted (adjusted) p-value function point-wise (interval-wise) controls the probability of type-I error and it is point-wise (interval-wise) consistent. To enlighten the gain in terms of interpretation of the phenomenon under study, we applied the interval-wise testing to the analysis of a benchmark functional data set, i.e. Canadian daily temperatures. The new procedure provides insights that current state-of-the-art procedures do not, supporting similar advantages in the analysis of functional data with less prior knowledge. |
---|---|
ISSN: | 1048-5252 1029-0311 |
DOI: | 10.1080/10485252.2017.1306627 |