Loading…

Neumann to Steklov eigenvalues: asymptotic and monotonicity results

We consider the Steklov eigenvalues of the Laplace operator as limiting Neumann eigenvalues in a problem of mass concentration at the boundary of a ball. We discuss the asymptotic behaviour of the Neumann eigenvalues and find explicit formulae for their derivatives in the limiting problem. We deduce...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2017-04, Vol.147 (2), p.429-447
Main Authors: Lamberti, Pier Domenico, Provenzano, Luigi
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the Steklov eigenvalues of the Laplace operator as limiting Neumann eigenvalues in a problem of mass concentration at the boundary of a ball. We discuss the asymptotic behaviour of the Neumann eigenvalues and find explicit formulae for their derivatives in the limiting problem. We deduce that the Neumann eigenvalues have a monotone behaviour in the limit and that Steklov eigenvalues locally minimize the Neumann eigenvalues.
ISSN:0308-2105
1473-7124
DOI:10.1017/S0308210516000214