Loading…
A Monte Carlo approach to quantifying discrepancies between intractable posterior distributions
The computational demand required to perform inference using Markov chain Monte Carlo methods often obstructs a Bayesian analysis. This may be a result of large datasets, complex dependence structures, or expensive computer models. In these instances, the posterior distribution is replaced by a comp...
Saved in:
Published in: | Journal of statistical computation and simulation 2017-05, Vol.87 (8), p.1666-1683 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The computational demand required to perform inference using Markov chain Monte Carlo methods often obstructs a Bayesian analysis. This may be a result of large datasets, complex dependence structures, or expensive computer models. In these instances, the posterior distribution is replaced by a computationally tractable approximation, and inference is based on this working model. However, the error that is introduced by this practice is not well studied. In this paper, we propose a methodology that allows one to examine the impact on statistical inference by quantifying the discrepancy between the intractable and working posterior distributions. This work provides a structure to analyse model approximations with regard to the reliability of inference and computational efficiency. We illustrate our approach through a spatial analysis of yearly total precipitation anomalies where covariance tapering approximations are used to alleviate the computational demand associated with inverting a large, dense covariance matrix. |
---|---|
ISSN: | 0094-9655 1563-5163 |
DOI: | 10.1080/00949655.2017.1281277 |