Loading…

A Monte Carlo approach to quantifying discrepancies between intractable posterior distributions

The computational demand required to perform inference using Markov chain Monte Carlo methods often obstructs a Bayesian analysis. This may be a result of large datasets, complex dependence structures, or expensive computer models. In these instances, the posterior distribution is replaced by a comp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical computation and simulation 2017-05, Vol.87 (8), p.1666-1683
Main Authors: Hepler, Staci A., Herbei, Radu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c319t-c4a937341ac5b355fef5da5afd260ec016232bfab42bac75d7e054c8134c538f3
container_end_page 1683
container_issue 8
container_start_page 1666
container_title Journal of statistical computation and simulation
container_volume 87
creator Hepler, Staci A.
Herbei, Radu
description The computational demand required to perform inference using Markov chain Monte Carlo methods often obstructs a Bayesian analysis. This may be a result of large datasets, complex dependence structures, or expensive computer models. In these instances, the posterior distribution is replaced by a computationally tractable approximation, and inference is based on this working model. However, the error that is introduced by this practice is not well studied. In this paper, we propose a methodology that allows one to examine the impact on statistical inference by quantifying the discrepancy between the intractable and working posterior distributions. This work provides a structure to analyse model approximations with regard to the reliability of inference and computational efficiency. We illustrate our approach through a spatial analysis of yearly total precipitation anomalies where covariance tapering approximations are used to alleviate the computational demand associated with inverting a large, dense covariance matrix.
doi_str_mv 10.1080/00949655.2017.1281277
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904239606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4320986493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c4a937341ac5b355fef5da5afd260ec016232bfab42bac75d7e054c8134c538f3</originalsourceid><addsrcrecordid>eNp9kEtLAzEYRYMoWKs_QQi4cTM1j8k8dpbiCypudB2-ySSaMk2mSQbpv3eG1o0LV3dz7uVyELqmZEFJRe4IqfO6EGLBCC0XlFWUleUJmlFR8EzQgp-i2cRkE3SOLmLcEEIoFWyG5BK_epc0XkHoPIa-Dx7UF04e7wZwyZq9dZ-4tVEF3YNTVkfc6PSttcPWpQAqQdNp3PuYdLA-TGwKthmS9S5eojMDXdRXx5yjj8eH99Vztn57elkt15nitE6ZyqHmJc8pKNFwIYw2ogUBpmUF0YrQgnHWGGhy1oAqRVtqInJVUZ4rwSvD5-j2sDv-3w06JrkdL-uuA6f9ECWtSc54XZBiRG_-oBs_BDe-k7Qqq4qUBecjJQ6UCj7GoI3sg91C2EtK5KRd_mqXk3Z51D727g8964wPW_j2oWtlgn3ngwmTwCj5_xM_1wuKww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878807633</pqid></control><display><type>article</type><title>A Monte Carlo approach to quantifying discrepancies between intractable posterior distributions</title><source>Taylor and Francis Science and Technology Collection</source><creator>Hepler, Staci A. ; Herbei, Radu</creator><creatorcontrib>Hepler, Staci A. ; Herbei, Radu</creatorcontrib><description>The computational demand required to perform inference using Markov chain Monte Carlo methods often obstructs a Bayesian analysis. This may be a result of large datasets, complex dependence structures, or expensive computer models. In these instances, the posterior distribution is replaced by a computationally tractable approximation, and inference is based on this working model. However, the error that is introduced by this practice is not well studied. In this paper, we propose a methodology that allows one to examine the impact on statistical inference by quantifying the discrepancy between the intractable and working posterior distributions. This work provides a structure to analyse model approximations with regard to the reliability of inference and computational efficiency. We illustrate our approach through a spatial analysis of yearly total precipitation anomalies where covariance tapering approximations are used to alleviate the computational demand associated with inverting a large, dense covariance matrix.</description><identifier>ISSN: 0094-9655</identifier><identifier>EISSN: 1563-5163</identifier><identifier>DOI: 10.1080/00949655.2017.1281277</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Approximation ; Bayesian analysis ; Computation ; Computer simulation ; covariance tapering ; Demand analysis ; divergence ; Inference ; Kullback-Leibler ; Mathematical analysis ; Mathematical models ; Model error ; Monte Carlo methods ; Monte Carlo simulation</subject><ispartof>Journal of statistical computation and simulation, 2017-05, Vol.87 (8), p.1666-1683</ispartof><rights>2017 Informa UK Limited, trading as Taylor &amp; Francis Group 2017</rights><rights>2017 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c319t-c4a937341ac5b355fef5da5afd260ec016232bfab42bac75d7e054c8134c538f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hepler, Staci A.</creatorcontrib><creatorcontrib>Herbei, Radu</creatorcontrib><title>A Monte Carlo approach to quantifying discrepancies between intractable posterior distributions</title><title>Journal of statistical computation and simulation</title><description>The computational demand required to perform inference using Markov chain Monte Carlo methods often obstructs a Bayesian analysis. This may be a result of large datasets, complex dependence structures, or expensive computer models. In these instances, the posterior distribution is replaced by a computationally tractable approximation, and inference is based on this working model. However, the error that is introduced by this practice is not well studied. In this paper, we propose a methodology that allows one to examine the impact on statistical inference by quantifying the discrepancy between the intractable and working posterior distributions. This work provides a structure to analyse model approximations with regard to the reliability of inference and computational efficiency. We illustrate our approach through a spatial analysis of yearly total precipitation anomalies where covariance tapering approximations are used to alleviate the computational demand associated with inverting a large, dense covariance matrix.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>covariance tapering</subject><subject>Demand analysis</subject><subject>divergence</subject><subject>Inference</subject><subject>Kullback-Leibler</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Model error</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><issn>0094-9655</issn><issn>1563-5163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEYRYMoWKs_QQi4cTM1j8k8dpbiCypudB2-ySSaMk2mSQbpv3eG1o0LV3dz7uVyELqmZEFJRe4IqfO6EGLBCC0XlFWUleUJmlFR8EzQgp-i2cRkE3SOLmLcEEIoFWyG5BK_epc0XkHoPIa-Dx7UF04e7wZwyZq9dZ-4tVEF3YNTVkfc6PSttcPWpQAqQdNp3PuYdLA-TGwKthmS9S5eojMDXdRXx5yjj8eH99Vztn57elkt15nitE6ZyqHmJc8pKNFwIYw2ogUBpmUF0YrQgnHWGGhy1oAqRVtqInJVUZ4rwSvD5-j2sDv-3w06JrkdL-uuA6f9ECWtSc54XZBiRG_-oBs_BDe-k7Qqq4qUBecjJQ6UCj7GoI3sg91C2EtK5KRd_mqXk3Z51D727g8964wPW_j2oWtlgn3ngwmTwCj5_xM_1wuKww</recordid><startdate>20170524</startdate><enddate>20170524</enddate><creator>Hepler, Staci A.</creator><creator>Herbei, Radu</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170524</creationdate><title>A Monte Carlo approach to quantifying discrepancies between intractable posterior distributions</title><author>Hepler, Staci A. ; Herbei, Radu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c4a937341ac5b355fef5da5afd260ec016232bfab42bac75d7e054c8134c538f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>covariance tapering</topic><topic>Demand analysis</topic><topic>divergence</topic><topic>Inference</topic><topic>Kullback-Leibler</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Model error</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hepler, Staci A.</creatorcontrib><creatorcontrib>Herbei, Radu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of statistical computation and simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hepler, Staci A.</au><au>Herbei, Radu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Monte Carlo approach to quantifying discrepancies between intractable posterior distributions</atitle><jtitle>Journal of statistical computation and simulation</jtitle><date>2017-05-24</date><risdate>2017</risdate><volume>87</volume><issue>8</issue><spage>1666</spage><epage>1683</epage><pages>1666-1683</pages><issn>0094-9655</issn><eissn>1563-5163</eissn><abstract>The computational demand required to perform inference using Markov chain Monte Carlo methods often obstructs a Bayesian analysis. This may be a result of large datasets, complex dependence structures, or expensive computer models. In these instances, the posterior distribution is replaced by a computationally tractable approximation, and inference is based on this working model. However, the error that is introduced by this practice is not well studied. In this paper, we propose a methodology that allows one to examine the impact on statistical inference by quantifying the discrepancy between the intractable and working posterior distributions. This work provides a structure to analyse model approximations with regard to the reliability of inference and computational efficiency. We illustrate our approach through a spatial analysis of yearly total precipitation anomalies where covariance tapering approximations are used to alleviate the computational demand associated with inverting a large, dense covariance matrix.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00949655.2017.1281277</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-9655
ispartof Journal of statistical computation and simulation, 2017-05, Vol.87 (8), p.1666-1683
issn 0094-9655
1563-5163
language eng
recordid cdi_proquest_miscellaneous_1904239606
source Taylor and Francis Science and Technology Collection
subjects Approximation
Bayesian analysis
Computation
Computer simulation
covariance tapering
Demand analysis
divergence
Inference
Kullback-Leibler
Mathematical analysis
Mathematical models
Model error
Monte Carlo methods
Monte Carlo simulation
title A Monte Carlo approach to quantifying discrepancies between intractable posterior distributions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Monte%20Carlo%20approach%20to%20quantifying%20discrepancies%20between%20intractable%20posterior%20distributions&rft.jtitle=Journal%20of%20statistical%20computation%20and%20simulation&rft.au=Hepler,%20Staci%20A.&rft.date=2017-05-24&rft.volume=87&rft.issue=8&rft.spage=1666&rft.epage=1683&rft.pages=1666-1683&rft.issn=0094-9655&rft.eissn=1563-5163&rft_id=info:doi/10.1080/00949655.2017.1281277&rft_dat=%3Cproquest_infor%3E4320986493%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-c4a937341ac5b355fef5da5afd260ec016232bfab42bac75d7e054c8134c538f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1878807633&rft_id=info:pmid/&rfr_iscdi=true