Loading…
New examples (and counterexamples) of complete finite-rank differential varieties
Differential algebraic geometry seeks to extend the results of its algebraic counterpart to objects defined by differential equations. Many notions, such as that of a projective algebraic variety, have close differential analogues but their behavior can vary in interesting ways. Workers in both diff...
Saved in:
Published in: | Communications in algebra 2017-07, Vol.45 (7), p.3137-3149 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Differential algebraic geometry seeks to extend the results of its algebraic counterpart to objects defined by differential equations. Many notions, such as that of a projective algebraic variety, have close differential analogues but their behavior can vary in interesting ways. Workers in both differential algebra and model theory have investigated the property of completeness of differential varieties. After reviewing their results, we extend that work by proving several versions of a "differential valuative criterion" and using them to give new examples of complete differential varieties. We conclude by analyzing the first examples of incomplete, finite-rank projective differential varieties, demonstrating a clear difference from projective algebraic varieties. |
---|---|
ISSN: | 0092-7872 1532-4125 |
DOI: | 10.1080/00927872.2016.1236115 |