Loading…

New examples (and counterexamples) of complete finite-rank differential varieties

Differential algebraic geometry seeks to extend the results of its algebraic counterpart to objects defined by differential equations. Many notions, such as that of a projective algebraic variety, have close differential analogues but their behavior can vary in interesting ways. Workers in both diff...

Full description

Saved in:
Bibliographic Details
Published in:Communications in algebra 2017-07, Vol.45 (7), p.3137-3149
Main Author: Simmons, William D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c319t-4c3683395af5890625e940ee638b4bc16f529ac7f3b7433536be6e02833ac0c03
container_end_page 3149
container_issue 7
container_start_page 3137
container_title Communications in algebra
container_volume 45
creator Simmons, William D.
description Differential algebraic geometry seeks to extend the results of its algebraic counterpart to objects defined by differential equations. Many notions, such as that of a projective algebraic variety, have close differential analogues but their behavior can vary in interesting ways. Workers in both differential algebra and model theory have investigated the property of completeness of differential varieties. After reviewing their results, we extend that work by proving several versions of a "differential valuative criterion" and using them to give new examples of complete differential varieties. We conclude by analyzing the first examples of incomplete, finite-rank projective differential varieties, demonstrating a clear difference from projective algebraic varieties.
doi_str_mv 10.1080/00927872.2016.1236115
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904240513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904240513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4c3683395af5890625e940ee638b4bc16f529ac7f3b7433536be6e02833ac0c03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QVjwUg9bJ8lmP25K8QuKIug5ZNMJpG43Ndm19t-bpe3Fg6cZhud9GR5CLilMKZRwA1CxoizYlAHNp5TxnFJxREZUcJZmlIljMhqYdIBOyVkISwAqipKNyNsLbhL8Uat1gyGZqHaRaNe3HfrD8TpxJt6GvcPE2NZ2mHrVfiYLa0zk2s6qJvlW3mJnMZyTE6OagBf7OSYfD_fvs6d0_vr4PLubp5rTqkszzfOS80ooI8oKciawygAx52Wd1ZrmRrBK6cLwusg4FzyvMUdgMaM0aOBjMtn1rr376jF0cmWDxqZRLbo-SFpBxjIQlEf06g-6dL1v43eRYhxolXEaKbGjtHcheDRy7e1K-a2kIAfR8iBaDqLlXnTM3e5ytjXOr9TG-WYhO7VtnDdRlLZB8v8rfgHCroNO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923019431</pqid></control><display><type>article</type><title>New examples (and counterexamples) of complete finite-rank differential varieties</title><source>Taylor and Francis Science and Technology Collection</source><creator>Simmons, William D.</creator><creatorcontrib>Simmons, William D.</creatorcontrib><description>Differential algebraic geometry seeks to extend the results of its algebraic counterpart to objects defined by differential equations. Many notions, such as that of a projective algebraic variety, have close differential analogues but their behavior can vary in interesting ways. Workers in both differential algebra and model theory have investigated the property of completeness of differential varieties. After reviewing their results, we extend that work by proving several versions of a "differential valuative criterion" and using them to give new examples of complete differential varieties. We conclude by analyzing the first examples of incomplete, finite-rank projective differential varieties, demonstrating a clear difference from projective algebraic varieties.</description><identifier>ISSN: 0092-7872</identifier><identifier>EISSN: 1532-4125</identifier><identifier>DOI: 10.1080/00927872.2016.1236115</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Algebra ; Complete variety ; Completeness ; Criteria ; differential algebra ; differential algebraic geometry ; Differential equations ; Differential geometry ; model theory ; Reviewing</subject><ispartof>Communications in algebra, 2017-07, Vol.45 (7), p.3137-3149</ispartof><rights>Copyright © Taylor &amp; Francis 2017</rights><rights>Copyright © Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c319t-4c3683395af5890625e940ee638b4bc16f529ac7f3b7433536be6e02833ac0c03</cites><orcidid>0000-0003-0815-0727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Simmons, William D.</creatorcontrib><title>New examples (and counterexamples) of complete finite-rank differential varieties</title><title>Communications in algebra</title><description>Differential algebraic geometry seeks to extend the results of its algebraic counterpart to objects defined by differential equations. Many notions, such as that of a projective algebraic variety, have close differential analogues but their behavior can vary in interesting ways. Workers in both differential algebra and model theory have investigated the property of completeness of differential varieties. After reviewing their results, we extend that work by proving several versions of a "differential valuative criterion" and using them to give new examples of complete differential varieties. We conclude by analyzing the first examples of incomplete, finite-rank projective differential varieties, demonstrating a clear difference from projective algebraic varieties.</description><subject>Algebra</subject><subject>Complete variety</subject><subject>Completeness</subject><subject>Criteria</subject><subject>differential algebra</subject><subject>differential algebraic geometry</subject><subject>Differential equations</subject><subject>Differential geometry</subject><subject>model theory</subject><subject>Reviewing</subject><issn>0092-7872</issn><issn>1532-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QVjwUg9bJ8lmP25K8QuKIug5ZNMJpG43Ndm19t-bpe3Fg6cZhud9GR5CLilMKZRwA1CxoizYlAHNp5TxnFJxREZUcJZmlIljMhqYdIBOyVkISwAqipKNyNsLbhL8Uat1gyGZqHaRaNe3HfrD8TpxJt6GvcPE2NZ2mHrVfiYLa0zk2s6qJvlW3mJnMZyTE6OagBf7OSYfD_fvs6d0_vr4PLubp5rTqkszzfOS80ooI8oKciawygAx52Wd1ZrmRrBK6cLwusg4FzyvMUdgMaM0aOBjMtn1rr376jF0cmWDxqZRLbo-SFpBxjIQlEf06g-6dL1v43eRYhxolXEaKbGjtHcheDRy7e1K-a2kIAfR8iBaDqLlXnTM3e5ytjXOr9TG-WYhO7VtnDdRlLZB8v8rfgHCroNO</recordid><startdate>20170703</startdate><enddate>20170703</enddate><creator>Simmons, William D.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0815-0727</orcidid></search><sort><creationdate>20170703</creationdate><title>New examples (and counterexamples) of complete finite-rank differential varieties</title><author>Simmons, William D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4c3683395af5890625e940ee638b4bc16f529ac7f3b7433536be6e02833ac0c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Complete variety</topic><topic>Completeness</topic><topic>Criteria</topic><topic>differential algebra</topic><topic>differential algebraic geometry</topic><topic>Differential equations</topic><topic>Differential geometry</topic><topic>model theory</topic><topic>Reviewing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simmons, William D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simmons, William D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New examples (and counterexamples) of complete finite-rank differential varieties</atitle><jtitle>Communications in algebra</jtitle><date>2017-07-03</date><risdate>2017</risdate><volume>45</volume><issue>7</issue><spage>3137</spage><epage>3149</epage><pages>3137-3149</pages><issn>0092-7872</issn><eissn>1532-4125</eissn><abstract>Differential algebraic geometry seeks to extend the results of its algebraic counterpart to objects defined by differential equations. Many notions, such as that of a projective algebraic variety, have close differential analogues but their behavior can vary in interesting ways. Workers in both differential algebra and model theory have investigated the property of completeness of differential varieties. After reviewing their results, we extend that work by proving several versions of a "differential valuative criterion" and using them to give new examples of complete differential varieties. We conclude by analyzing the first examples of incomplete, finite-rank projective differential varieties, demonstrating a clear difference from projective algebraic varieties.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00927872.2016.1236115</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0815-0727</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0092-7872
ispartof Communications in algebra, 2017-07, Vol.45 (7), p.3137-3149
issn 0092-7872
1532-4125
language eng
recordid cdi_proquest_miscellaneous_1904240513
source Taylor and Francis Science and Technology Collection
subjects Algebra
Complete variety
Completeness
Criteria
differential algebra
differential algebraic geometry
Differential equations
Differential geometry
model theory
Reviewing
title New examples (and counterexamples) of complete finite-rank differential varieties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20examples%20(and%20counterexamples)%20of%20complete%20finite-rank%20differential%20varieties&rft.jtitle=Communications%20in%20algebra&rft.au=Simmons,%20William%20D.&rft.date=2017-07-03&rft.volume=45&rft.issue=7&rft.spage=3137&rft.epage=3149&rft.pages=3137-3149&rft.issn=0092-7872&rft.eissn=1532-4125&rft_id=info:doi/10.1080/00927872.2016.1236115&rft_dat=%3Cproquest_cross%3E1904240513%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-4c3683395af5890625e940ee638b4bc16f529ac7f3b7433536be6e02833ac0c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1923019431&rft_id=info:pmid/&rfr_iscdi=true