Loading…
New examples (and counterexamples) of complete finite-rank differential varieties
Differential algebraic geometry seeks to extend the results of its algebraic counterpart to objects defined by differential equations. Many notions, such as that of a projective algebraic variety, have close differential analogues but their behavior can vary in interesting ways. Workers in both diff...
Saved in:
Published in: | Communications in algebra 2017-07, Vol.45 (7), p.3137-3149 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-4c3683395af5890625e940ee638b4bc16f529ac7f3b7433536be6e02833ac0c03 |
container_end_page | 3149 |
container_issue | 7 |
container_start_page | 3137 |
container_title | Communications in algebra |
container_volume | 45 |
creator | Simmons, William D. |
description | Differential algebraic geometry seeks to extend the results of its algebraic counterpart to objects defined by differential equations. Many notions, such as that of a projective algebraic variety, have close differential analogues but their behavior can vary in interesting ways. Workers in both differential algebra and model theory have investigated the property of completeness of differential varieties. After reviewing their results, we extend that work by proving several versions of a "differential valuative criterion" and using them to give new examples of complete differential varieties. We conclude by analyzing the first examples of incomplete, finite-rank projective differential varieties, demonstrating a clear difference from projective algebraic varieties. |
doi_str_mv | 10.1080/00927872.2016.1236115 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904240513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904240513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4c3683395af5890625e940ee638b4bc16f529ac7f3b7433536be6e02833ac0c03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QVjwUg9bJ8lmP25K8QuKIug5ZNMJpG43Ndm19t-bpe3Fg6cZhud9GR5CLilMKZRwA1CxoizYlAHNp5TxnFJxREZUcJZmlIljMhqYdIBOyVkISwAqipKNyNsLbhL8Uat1gyGZqHaRaNe3HfrD8TpxJt6GvcPE2NZ2mHrVfiYLa0zk2s6qJvlW3mJnMZyTE6OagBf7OSYfD_fvs6d0_vr4PLubp5rTqkszzfOS80ooI8oKciawygAx52Wd1ZrmRrBK6cLwusg4FzyvMUdgMaM0aOBjMtn1rr376jF0cmWDxqZRLbo-SFpBxjIQlEf06g-6dL1v43eRYhxolXEaKbGjtHcheDRy7e1K-a2kIAfR8iBaDqLlXnTM3e5ytjXOr9TG-WYhO7VtnDdRlLZB8v8rfgHCroNO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923019431</pqid></control><display><type>article</type><title>New examples (and counterexamples) of complete finite-rank differential varieties</title><source>Taylor and Francis Science and Technology Collection</source><creator>Simmons, William D.</creator><creatorcontrib>Simmons, William D.</creatorcontrib><description>Differential algebraic geometry seeks to extend the results of its algebraic counterpart to objects defined by differential equations. Many notions, such as that of a projective algebraic variety, have close differential analogues but their behavior can vary in interesting ways. Workers in both differential algebra and model theory have investigated the property of completeness of differential varieties. After reviewing their results, we extend that work by proving several versions of a "differential valuative criterion" and using them to give new examples of complete differential varieties. We conclude by analyzing the first examples of incomplete, finite-rank projective differential varieties, demonstrating a clear difference from projective algebraic varieties.</description><identifier>ISSN: 0092-7872</identifier><identifier>EISSN: 1532-4125</identifier><identifier>DOI: 10.1080/00927872.2016.1236115</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Algebra ; Complete variety ; Completeness ; Criteria ; differential algebra ; differential algebraic geometry ; Differential equations ; Differential geometry ; model theory ; Reviewing</subject><ispartof>Communications in algebra, 2017-07, Vol.45 (7), p.3137-3149</ispartof><rights>Copyright © Taylor & Francis 2017</rights><rights>Copyright © Taylor & Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c319t-4c3683395af5890625e940ee638b4bc16f529ac7f3b7433536be6e02833ac0c03</cites><orcidid>0000-0003-0815-0727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Simmons, William D.</creatorcontrib><title>New examples (and counterexamples) of complete finite-rank differential varieties</title><title>Communications in algebra</title><description>Differential algebraic geometry seeks to extend the results of its algebraic counterpart to objects defined by differential equations. Many notions, such as that of a projective algebraic variety, have close differential analogues but their behavior can vary in interesting ways. Workers in both differential algebra and model theory have investigated the property of completeness of differential varieties. After reviewing their results, we extend that work by proving several versions of a "differential valuative criterion" and using them to give new examples of complete differential varieties. We conclude by analyzing the first examples of incomplete, finite-rank projective differential varieties, demonstrating a clear difference from projective algebraic varieties.</description><subject>Algebra</subject><subject>Complete variety</subject><subject>Completeness</subject><subject>Criteria</subject><subject>differential algebra</subject><subject>differential algebraic geometry</subject><subject>Differential equations</subject><subject>Differential geometry</subject><subject>model theory</subject><subject>Reviewing</subject><issn>0092-7872</issn><issn>1532-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QVjwUg9bJ8lmP25K8QuKIug5ZNMJpG43Ndm19t-bpe3Fg6cZhud9GR5CLilMKZRwA1CxoizYlAHNp5TxnFJxREZUcJZmlIljMhqYdIBOyVkISwAqipKNyNsLbhL8Uat1gyGZqHaRaNe3HfrD8TpxJt6GvcPE2NZ2mHrVfiYLa0zk2s6qJvlW3mJnMZyTE6OagBf7OSYfD_fvs6d0_vr4PLubp5rTqkszzfOS80ooI8oKciawygAx52Wd1ZrmRrBK6cLwusg4FzyvMUdgMaM0aOBjMtn1rr376jF0cmWDxqZRLbo-SFpBxjIQlEf06g-6dL1v43eRYhxolXEaKbGjtHcheDRy7e1K-a2kIAfR8iBaDqLlXnTM3e5ytjXOr9TG-WYhO7VtnDdRlLZB8v8rfgHCroNO</recordid><startdate>20170703</startdate><enddate>20170703</enddate><creator>Simmons, William D.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0815-0727</orcidid></search><sort><creationdate>20170703</creationdate><title>New examples (and counterexamples) of complete finite-rank differential varieties</title><author>Simmons, William D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4c3683395af5890625e940ee638b4bc16f529ac7f3b7433536be6e02833ac0c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Complete variety</topic><topic>Completeness</topic><topic>Criteria</topic><topic>differential algebra</topic><topic>differential algebraic geometry</topic><topic>Differential equations</topic><topic>Differential geometry</topic><topic>model theory</topic><topic>Reviewing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simmons, William D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simmons, William D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New examples (and counterexamples) of complete finite-rank differential varieties</atitle><jtitle>Communications in algebra</jtitle><date>2017-07-03</date><risdate>2017</risdate><volume>45</volume><issue>7</issue><spage>3137</spage><epage>3149</epage><pages>3137-3149</pages><issn>0092-7872</issn><eissn>1532-4125</eissn><abstract>Differential algebraic geometry seeks to extend the results of its algebraic counterpart to objects defined by differential equations. Many notions, such as that of a projective algebraic variety, have close differential analogues but their behavior can vary in interesting ways. Workers in both differential algebra and model theory have investigated the property of completeness of differential varieties. After reviewing their results, we extend that work by proving several versions of a "differential valuative criterion" and using them to give new examples of complete differential varieties. We conclude by analyzing the first examples of incomplete, finite-rank projective differential varieties, demonstrating a clear difference from projective algebraic varieties.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/00927872.2016.1236115</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0815-0727</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-7872 |
ispartof | Communications in algebra, 2017-07, Vol.45 (7), p.3137-3149 |
issn | 0092-7872 1532-4125 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904240513 |
source | Taylor and Francis Science and Technology Collection |
subjects | Algebra Complete variety Completeness Criteria differential algebra differential algebraic geometry Differential equations Differential geometry model theory Reviewing |
title | New examples (and counterexamples) of complete finite-rank differential varieties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20examples%20(and%20counterexamples)%20of%20complete%20finite-rank%20differential%20varieties&rft.jtitle=Communications%20in%20algebra&rft.au=Simmons,%20William%20D.&rft.date=2017-07-03&rft.volume=45&rft.issue=7&rft.spage=3137&rft.epage=3149&rft.pages=3137-3149&rft.issn=0092-7872&rft.eissn=1532-4125&rft_id=info:doi/10.1080/00927872.2016.1236115&rft_dat=%3Cproquest_cross%3E1904240513%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-4c3683395af5890625e940ee638b4bc16f529ac7f3b7433536be6e02833ac0c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1923019431&rft_id=info:pmid/&rfr_iscdi=true |