Loading…
Projecting regional change
Techniques to downscale global climate model (GCM) output and produce high-resolution climate change projections have emerged over the past two decades. GCM projections of future climate change, with typical resolutions of about 100 km, are now routinely downscaled to resolutions as high as hundreds...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2014-12, Vol.346 (6216), p.1461-1462 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Techniques to downscale global climate model (GCM) output and produce high-resolution climate change projections have emerged over the past two decades. GCM projections of future climate change, with typical resolutions of about 100 km, are now routinely downscaled to resolutions as high as hundreds of meters. Pressure to use these techniques to produce policy-relevant information is enormous. To prevent bad decisions, the climate science community must identify downscaling's strengths and limitations and develop best practices. A starting point for this discussion is to acknowledge that downscaled climate signals arising from warming are more credible than those arising from circulation changes. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.aaa0629 |