Loading…
Longitudinal Volume Quantification of Deep Medullary Veins in Patients with Cerebral Venous Sinus Thrombosis: Venous Volume Assessment in Cerebral Venous Sinus Thrombosis Using SWI
Purpose Susceptibility-weighted imaging (SWI) visualizes small cerebral veins with high sensitivity and could, thus, enable quantification of hemodynamics of deep medullary veins. We aimed to evaluate volume changes of deep medullary veins in patients with acute cerebral venous sinus thrombosis (CVS...
Saved in:
Published in: | Clinical neuroradiology (Munich) 2018-12, Vol.28 (4), p.493-499 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
Susceptibility-weighted imaging (SWI) visualizes small cerebral veins with high sensitivity and could, thus, enable quantification of hemodynamics of deep medullary veins. We aimed to evaluate volume changes of deep medullary veins in patients with acute cerebral venous sinus thrombosis (CVST) over time in comparison to healthy controls.
Methods
All magnetic resonance imaging (MRI) experiments were executed at 3 T using a 32-channel head coil. Based on SWI and semiautomatic postprocessing (statistical parametric mapping [SPM8] and ANTs), the volume of deep medullary veins was quantified in 14 patients with acute CVST at baseline and the 6‑month follow-up, as well as in 13 healthy controls undergoing repeated MRI examination with an interscan interval of at least 1 month.
Results
Deep medullary venous volume change over time was significantly different between healthy controls and patient groups (
p
< 0.001). Patients with superior sagittal sinus thrombosis (SSST) showed a significant decline from baseline to follow-up measurements (9.8 ± 4.9 ml versus 7.5 ± 4.2 ml;
p
= 0.02), whereas in patients with transverse sinus thrombosis (TST) and healthy controls no significant volume changes were observable.
Conclusions
Venous volume quantification was feasible and reproducible both in healthy volunteers and in patients. The decrease of venous volume in patients over time represents improvement of venous drainage, reduction of congestion, and normalization of microcirculation due to treatment. Thus, quantification of venous microcirculation could be valuable for estimation of prognosis and guidance of CVST therapy in the future. |
---|---|
ISSN: | 1869-1439 1869-1447 |
DOI: | 10.1007/s00062-017-0602-z |