Loading…
Evolution of Cyclodextrin Nanosponges
[Display omitted] Cyclodextrin-based nanosponges (CD-NSs) are insoluble, highly cross-linked 3D network polymers used in several scientific and technological fields, the main area of investigation concerns the pharmaceutical applications, in which CD-NSs have been mostly employed as drug delivery sy...
Saved in:
Published in: | International journal of pharmaceutics 2017-10, Vol.531 (2), p.470-479 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Cyclodextrin-based nanosponges (CD-NSs) are insoluble, highly cross-linked 3D network polymers used in several scientific and technological fields, the main area of investigation concerns the pharmaceutical applications, in which CD-NSs have been mostly employed as drug delivery systems.
CD-NSs can be generally grouped into four consecutive generations, taking into account their chemical composition and properties. The 1st generation of NSs are plain nanosponges, subdivided into four main types: urethane, carbonate, ester and ether NSs, depending on the chemical nature of the functional group connecting the CD to the cross-linker. The 2nd generation of NSs are modified nanosponges characterized by specific properties, such as fluorescence and electric charge. The 3rd generation of NSs is represented by stimuli-responsive CD polymers, which are able to modulate their behavior according to external variations in the environment, such as pH and temperature gradients, oxidative/reducing conditions, and finally the 4th generation of NSs, a new family of molecularly imprinted CD polymers (MIPs), exhibiting a high selectivity towards specific molecules.
The following review focuses on the evolution of cyclodextrin nanosponges, listing some examples of each generation. |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2017.06.072 |