Loading…
Hemodynamic Effects of Lipid-Based Oxygen Microbubbles via Rapid Intravenous Injection in Rodents
Purpose Low oxygen levels, or hypoxemia, is a common cause of morbidity and mortality in critically ill patients. Hypoxemia is typically addressed by increasing the fraction of inspired oxygen, the use of mechanical ventilation, or more invasive measures. Recently, the injection of oxygen gas direct...
Saved in:
Published in: | Pharmaceutical research 2017-10, Vol.34 (10), p.2156-2162 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
Low oxygen levels, or hypoxemia, is a common cause of morbidity and mortality in critically ill patients. Hypoxemia is typically addressed by increasing the fraction of inspired oxygen, the use of mechanical ventilation, or more invasive measures. Recently, the injection of oxygen gas directly into the bloodstream by packaging it within lipid-based oxygen microbubbles (LOMs) has been explored. The purpose of this work is to examine the acute hemodynamic effects of intravenous injections of LOMs.
Methods
LOMs composed of 1,2-distearoyl-sn-glycero-3-phosphocoline and cholesterol were manufactured using a process of shear homogenization under an oxygen headspace. A 5 mL aliquot of either PlasmaLyte A, or low (37%) or high (55%) concentration LOMs (
n
= 10 per group) was injected over a 1 min period into Sprague Dawley rats instrumented for measurement of cardiac index and pulmonary (PVR) and systemic (SVR) vascular resistance during a 60 min observation period. Hemodynamics were compared between groups by linear mixed modeling.
Results
Approximately 10
11
LOMs with mean diameter 3.77 ± 1.19 μm were injected over the 1 min period. Relative to controls, rodents treated with high concentration LOMs exhibited a higher pulmonary artery pressure (20 ± 0.4 mmHg
vs
18 ± 0.4 mmHg,
P
|
---|---|
ISSN: | 0724-8741 1573-904X |
DOI: | 10.1007/s11095-017-2222-3 |