Loading…
Diversity and succession of adventive and indigenous vascular understorey plants in Pinus radiata plantation forests in New Zealand
The vegetation of Pinus radiata plantation forests in New Zealand was studied to examine how the indigenous flora has responded to this novel habitat. A chronosequence of stands about 5, 16 and 27 years was assessed in each of four different biogeographic regions to test the effects of several stand...
Saved in:
Published in: | Forest ecology and management 2003-11, Vol.185 (3), p.307-326 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The vegetation of
Pinus radiata plantation forests in New Zealand was studied to examine how the indigenous flora has responded to this novel habitat. A chronosequence of stands about 5, 16 and 27 years was assessed in each of four different biogeographic regions to test the effects of several stand and site factors on the succession of vascular understorey plant communities. A total of 202 indigenous and 70 adventive vascular plant species were found across all study areas, with considerable geographic variation among forests in species composition, species richness (range 48–135 species), and the percentage of indigenous species (50–86%). Both richness and cover of adventive species decreased significantly over time, whereas richness and cover of indigenous species was highest in the oldest stands, and overall species richness was lowest at mid-rotation. The guild composition changed from dominance of grasses and forbs in young stands to dominance of ferns and understorey trees in mature stands. These temporal changes were accompanied by a decrease in light-demanding pioneer species and an increase in shade tolerant, later seral species adapted to a forest environment. Measurements of the degree of canopy closure in stands with low or high stocking and modelling of temporal changes of canopy closure indicated that these understorey plant dynamics are influenced by changes in light availability as stands age. Despite the successional changes within forests, geographic variation more strongly influenced understorey communities because stands within a forest area were grouped together in DCA and TWINSPAN analyses, along rainfall and temperature gradients. Although the canopy species of such intensively managed plantation forests is an alien element in the New Zealand flora, the sheltered forest environment of older stands allows the establishment of a mostly indigenous forest understorey community with considerable similarities to indigenous forests located nearby. |
---|---|
ISSN: | 0378-1127 1872-7042 |
DOI: | 10.1016/S0378-1127(03)00227-5 |