Loading…
Novel ultrafiltration membranes from low-fouling copolymers for RO pretreatment applications
For a consistent and reliable ultrafiltration (UF) membrane operation, the membrane flux level has always been determined conservatively so that fouling rate is controllable, and therefore, chemical cleaning requirements are minimized. A better solution is to prevent the fouling to happen in the fir...
Saved in:
Published in: | Desalination and water treatment 2016-10, Vol.57 (48-49), p.23185-23195 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For a consistent and reliable ultrafiltration (UF) membrane operation, the membrane flux level has always been determined conservatively so that fouling rate is controllable, and therefore, chemical cleaning requirements are minimized. A better solution is to prevent the fouling to happen in the first place by modifying the surface properties of the membrane materials. This paper presents novel approaches to improve the fouling-propensity performance of existing UF membranes based on polyethersulfone. More hydrophilic membranes and anti-adhesive membranes were developed by using various novel copolymers as base membrane materials or as an additive in the spinning process. Incorporating these copolymers, improved Multibore® fibers were produced and validated in multiple pilot trials for various applications, namely surface and wastewater purification and seawater reverse osmosis pretreatment for desalination. The paper demonstrates that, for each application, a reduced fouling propensity performance was achieved, allowing the fibers to be operated at a substantially higher flux of up to 30%. This study underscores the importance of chemistry in obtaining low-fouling and high-performance UF membranes by modifying their surface properties. |
---|---|
ISSN: | 1944-3986 1944-3994 1944-3986 |
DOI: | 10.1080/19443994.2016.1153906 |