Loading…

Metabolism of hexahydro-1,3,5-trinitro-1,3,5-triazine through initial reduction to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine followed by denitration in Clostridium bifermentans HAW-1

A fast hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-degrading [28.1 micromol h(-1) g (dry weight) cells(-1); biomass, 0.16 g (dry weight) cells(-1)] and strictly anaerobic bacterial strain, HAW-1, was isolated and identified as Clostridium bifermentans using a 16S-rRNA-based method. Based on initia...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2003-12, Vol.63 (2), p.187-193
Main Authors: ZHAO, J.-S, PAQUET, L, HALASZ, A, HAWARI, J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A fast hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-degrading [28.1 micromol h(-1) g (dry weight) cells(-1); biomass, 0.16 g (dry weight) cells(-1)] and strictly anaerobic bacterial strain, HAW-1, was isolated and identified as Clostridium bifermentans using a 16S-rRNA-based method. Based on initial rates, strain HAW-1 transformed RDX to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) with yields of 56, 7.3 and 0.2%, respectively. Complete removal of RDX and its nitroso metabolites produced (%, of total C or N) methanol (MeOH, 23%), formaldehyde (HCHO, 7.4%), carbon dioxide (CO2, 3.0%) and nitrous oxide (N2O, 29.5%) as end products. Under the same conditions, strain HAW-1 transformed MNX separately at a rate of 16.9 micromol h(-1) g (dry weight) cells(-1) and produced DNX (25%) and TNX (0.4%) as transient products. Final MNX transformation products were (%, of total C or N) MeOH (21%), HCHO (2.9%), and N2O (17%). Likewise strain HAW-1 degraded TNX at a rate of 7.5 micromol h(-1) g (dry weight) cells(-1 )to MeOH and HCHO. Furthermore, removal of both RDX and MNX produced nitrite (NO2-) as a transient product, but the nitrite release rate from MNX was quicker than from RDX. Thus, the predominant pathway for RDX degradation is based on initial reduction to MNX followed by denitration and decomposition. The continued sequential reduction to DNX and TNX is only a minor route.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-003-1364-x