Loading…
High-Level Quantum Calculations of the IR Spectra of the Eigen, Zundel, and Ring Isomers of H+(H2O)4 Find a Single Match to Experiment
The protonated water tetramer H+(H2O)4, often written as the Eigen cluster, H3O+(H2O)3, plays a central role in studies of the hydrated proton. The cluster has been investigated spectroscopically both experimentally and theoretically with some differences and controversies. The major issue stems fro...
Saved in:
Published in: | Journal of the American Chemical Society 2017-08, Vol.139 (32), p.10984-10987 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The protonated water tetramer H+(H2O)4, often written as the Eigen cluster, H3O+(H2O)3, plays a central role in studies of the hydrated proton. The cluster has been investigated spectroscopically both experimentally and theoretically with some differences and controversies. The major issue stems from the existence of higher-energy Zundel isomers of this cluster and the role these isomers might play in the IR spectra. Settling this fundamental issue is one goal of this Communication, where high-level quantum calculations of the IR spectra of the Eigen and three isomeric forms of this cluster are presented. These calculations make use of a many-body representation of the potential and dipole moment surfaces and VSCF/VCI calculations of vibrational eigenstates and the IR spectrum. The calculated spectra for the Eigen H3O+(H2O)3 and D3O+(D2O)3 isomers compare very well with experiment. The calculated spectra for the cis and trans-Zundel and ring isomers show prominent features that do not match with experiment but which can guide future experiments to search for these interesting and important isomers. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.7b05459 |