Loading…

SIRT6 regulates metabolic homeostasis in skeletal muscle through activation of AMPK

Because of the mass and functions in metabolism, skeletal muscle is one of the major organs regulating whole body metabolic homeostasis. SIRT6, a histone deacetylase, has been shown to regulate metabolism in liver and brain; however, its specific role in skeletal muscle is undetermined. In the prese...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology: endocrinology and metabolism 2017-10, Vol.313 (4), p.E493-E505
Main Authors: Cui, Xiaona, Yao, Lu, Yang, Xiaoying, Gao, Yong, Fang, Fude, Zhang, Jun, Wang, Qinghua, Chang, Yongsheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Because of the mass and functions in metabolism, skeletal muscle is one of the major organs regulating whole body metabolic homeostasis. SIRT6, a histone deacetylase, has been shown to regulate metabolism in liver and brain; however, its specific role in skeletal muscle is undetermined. In the present study we explored physiological function of SIRT6 in muscle. We generated a muscle-specific SIRT6 knockout mouse model. The mice with SIRT6 deficiency in muscle displayed impaired glucose homeostasis and insulin sensitivity, attenuated whole body energy expenditure, and weakened exercise performance. Mechanistically, deletion of SIRT6 in muscle decreased expression of genes involved in glucose and lipid uptake, fatty acid oxidation, and mitochondrial oxidative phosphorylation in muscle cells because of the reduced AMP-activated protein kinase (AMPK) activity. In contrast, overexpression of SIRT6 in C C myotubes activates AMPK. Our results from both gain- and loss-of-function experiments identify SIRT6 as a physiological regulator of muscle mitochondrial function. These findings indicate that SIRT6 is a potential therapeutic target for treatment of type 2 diabetes mellitus.
ISSN:0193-1849
1522-1555
DOI:10.1152/ajpendo.00122.2017