Loading…

In vitro and ex vivo evaluation of second‐generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy

Among a panel of histone deacetylase (HDAC) inhibitors investigated, suberoylanilide hydroxamic acid (SAHA) evolved as a potent and non‐toxic candidate drug for the treatment of spinal muscular atrophy (SMA), an α‐motoneurone disorder caused by insufficient survival motor neuron (SMN) protein levels...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurochemistry 2006-07, Vol.98 (1), p.193-202
Main Authors: Hahnen, Eric, Eyüpoglu, Ilker Y., Brichta, Lars, Haastert, Kirsten, Tränkle, Christian, Siebzehnrübl, Florian A., Riessland, Markus, Hölker, Irmgard, Claus, Peter, Romstöck, Johann, Buslei, Rolf, Wirth, Brunhilde, Blümcke, Ingmar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Among a panel of histone deacetylase (HDAC) inhibitors investigated, suberoylanilide hydroxamic acid (SAHA) evolved as a potent and non‐toxic candidate drug for the treatment of spinal muscular atrophy (SMA), an α‐motoneurone disorder caused by insufficient survival motor neuron (SMN) protein levels. SAHA increased SMN levels at low micromolar concentrations in several neuroectodermal tissues, including rat hippocampal brain slices and motoneurone‐rich cell fractions, and its therapeutic capacity was confirmed using a novel human brain slice culture assay. SAHA activated survival motor neuron gene 2 (SMN2), the target gene for SMA therapy, and inhibited HDACs at submicromolar doses, providing evidence that SAHA is more efficient than the HDAC inhibitor valproic acid, which is under clinical investigation for SMA treatment. In contrast to SAHA, the compounds m‐Carboxycinnamic acid bis‐Hydroxamide, suberoyl bishydroxamic acid and M344 displayed unfavourable toxicity profiles, whereas MS‐275 failed to increase SMN levels. Clinical trials have revealed that SAHA, which is under investigation for cancer treatment, has a good oral bioavailability and is well tolerated, allowing in vivo concentrations shown to increase SMN levels to be achieved. Because SAHA crosses the blood–brain barrier, oral administration may allow deceleration of progressive α‐motoneurone degeneration by epigenetic SMN2 gene activation.
ISSN:0022-3042
1471-4159
DOI:10.1111/j.1471-4159.2006.03868.x