Loading…
Extrusion modifies some physicochemical properties of milk protein concentrate for improved performance in high‐protein nutrition bars
BACKGROUND Extruded and ground milk protein concentrate powders, specifically those with 800 g kg–1 protein (i.e. MPC80), imparted softness, cohesion and textural stability to high‐protein nutrition (HPN) bars. The present study evaluated some physicochemical properties of extruded and conventionall...
Saved in:
Published in: | Journal of the science of food and agriculture 2018-01, Vol.98 (1), p.391-399 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | BACKGROUND
Extruded and ground milk protein concentrate powders, specifically those with 800 g kg–1 protein (i.e. MPC80), imparted softness, cohesion and textural stability to high‐protein nutrition (HPN) bars. The present study evaluated some physicochemical properties of extruded and conventionally produced (i.e. spray‐dried) MPC80 to explain these improvements. Protein chemical changes and aggregations within MPC80‐formulated HPN bars during storage were characterized.
RESULTS
Extruded MPC80 powders had broader particle size distribution (P < 0.05) and smaller volume‐weighted mean diameter (P < 0.05) than the spray‐dried control. Loose, tapped and particle densities increased (P < 0.05) and correspondingly occluded and interstitial air volumes decreased (P < 0.05) after extruding and milling MPC80. Extrusion decreased water holding capacity (P < 0.05) and solubility (P < 0.05), yet improved the wettability (P < 0.05) of MPC80. MPC80 free sulfhydryl (P < 0.05) and free amine (P < 0.05) concentrations decreased after extrusion. Sulfhydryl and amine concentrations changed (P < 0.05) and disulfide‐linked and, more prominently, Maillard‐induced aggregates developed during HPN bar storage.
CONCLUSION
Extrusion and milling together changed the physicochemical properties of MPC80. Chemical changes and protein aggregations occurred in HPN bars prepared with either type of MPC80. Thus, the physicochemical properties of the formulating powder require consideration for desired HPN bar texture and stability. © 2017 Society of Chemical Industry |
---|---|
ISSN: | 0022-5142 1097-0010 |
DOI: | 10.1002/jsfa.8632 |