Loading…
Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting
An intracellular delivery system for CRISPR/Cas9 is crucial for its application as a therapeutic genome editing technology in a broad range of diseases. Current vehicles carrying CRISPR/Cas9 limit in vivo delivery because of low tolerance and immunogenicity; thus, the in vivo delivery of genome edit...
Saved in:
Published in: | Journal of controlled release 2017-11, Vol.266, p.8-16 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An intracellular delivery system for CRISPR/Cas9 is crucial for its application as a therapeutic genome editing technology in a broad range of diseases. Current vehicles carrying CRISPR/Cas9 limit in vivo delivery because of low tolerance and immunogenicity; thus, the in vivo delivery of genome editing remains challenging. Here, we report that cancer-derived exosomes function as natural carriers that can efficiently deliver CRISPR/Cas9 plasmids to cancer. Compared to epithelial cell-derived exosomes, cancer-derived exosomes provide potential vehicles for effective in vivo delivery via selective accumulation in ovarian cancer tumors of SKOV3 xenograft mice, most likely because of their cell tropism. CRISPR/Cas9-loaded exosomes can suppress expression of poly (ADP-ribose) polymerase-1 (PARP-1), resulting in the induction of apoptosis in ovarian cancer. Furthermore, the inhibition of PARP-1 by CRISPR/Cas9-mediated genome editing enhances the chemosensitivity to cisplatin, showing synergistic cytotoxicity. Based on these results, tumor-derived exosomes may be very promising for cancer therapeutics in the future.
Graphical abstract [Display omitted] |
---|---|
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/j.jconrel.2017.09.013 |